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REsSumO

Sistemas complexos tém fascinado cientistas conasteaorganizacao
e propriedades emergentes. Este é um estudo em fpago de dois
aspectos de um sistema biolégico auto-organizadodirdimica
populacional e social deotalia guianensjsum delfinideo endémico do
oeste do Oceano Atlantico. A populagdo de botoacigae habita o
Banco dos Abrolhos, costa leste do Brasil, ofessce&omo uma boa
oportunidade para modelagem de tais dindmicasyéstrdo tempo e
espaco. Isso porque (1) o monitoramento sistemdstende-se por
mais de oito anos (2002-2009), tornando evidentesdamcas
demogréficas de uma populacdo aberta; e (2) paduea de estudo
abrange um habitat altamente heterogéneo, em udiegta de aguas
estuarinas internas a recifes de coral distantesodta, o que torna a
estratificacdo do uso do habitat uma hipotese plau€Em suma, este
estudo tem um objetivo duplo: abordar como a pgdwamuda ao
longo do tempo, fornecendo uma série de estimatieaparametros
demogréficos; e como estas mudancas afetam aueataaicial, do nivel
individual aos padroes da rede de interacbes daulggip.
Primeiramente, o experimento de longo-prazo de agarrecaptura
(Cormack-Jolly-Seber e Desenho Robusto de Polloekglou uma
populacdo pequena, composta por individuos residerg que
temporariamente deixam ou passam pela area deoestiactas de
sobrevivéncia foram altas e constantes, 0 que érap para animais
Cuja expectativa de vida € muito maior que a duragé estudo.
Estimativas de abundancia flutuaram, possivelmdatédo ao balanco
entrada-saida de individuos, mas nenhuma tendémicdetectada. O
esforco de amostragem atual apresentou alta piinlaale de deteccdo
de declinios abruptos, uma situacdo mais confdrtque a muitas
outras populagbes de cetdceos. Embora ainda natvedea variagcdes
sutis, o monitoramento podera identifica-las corfores adicional
plausivel (mais trés anos). Estas mudancas popuokisi encontraram-
se refletidas no padrédo de interacdes sociais.réft pa sugestdo de um
modelo conceitual de topologia de redes sociaislalénideos, uma
abordagem espaco-temporal testou a estrutura da Jecial deS.
guianensis Esta foi organizada em subconjuntos de individuos
densamente conectados. O uso do espaco ndo poderibaido a
emergéncia destes trés modulos. Por outro laddurnover de
individuos na populagéo foi o fator determinanteseparacao temporal
das interagbes sociais em modulos. Dentro da egseatporal do
turnover a populacdo seguiu uma dinamica de fissdo-fuséo,



caracterizada pela maioria das interagfes casyaisi@s associacoes
preferidas. Os principais produtos do trabalhocgfino seguem: (1) Foi
atestado um corpo analitico robusto, baseado enelowde populacao
aberta e fechada, para estimativa de diversos pt@ndemograficos
baseado em dados de foto-identificacéo; (2) Fitardado que fatores
nao-sociais podem afetar consideravelmente redéssodo-humanas,
portanto, devem ser levadas em consideragdo parataio fidedigno
de sociedades com dindmica de fissdo-fusédo. Tsudtados se baseam
no tempo como maior fator de causa de mudancaceoag@nizacao
deste sistema complexo. Os mesmos podem inspgguisa adicional,
gue terd implicagbes tanto aplicadas quanto terida primeiro caso,
as analises demograficas podem ser aplicadas adsdpapulacfes de
S. guianensjgpara permitir comparacgéo padronizada futuraestdrgo
conjunto permitira uma definicdo adequada sfatus da espécie e,
portanto, aperfeicoamento dos esforcos de consevaor fim, o
modelo conceitual de redes sociais pode gerar Hopageses testaveis.
Reconhecer os determinantes da topologia das reagais € um
importante passo na identificagdo dos mecanisnuasidd nos sistemas
sociais. Este esfor¢o contribui, em Ultima instAnpiara abordar como
caracteristicas ambientais e biolégicas tém intdoagmoldando as
diversas estruturas e dindmicas sociais enconteaddelphinidae.

Palavras-chave:dinamica populacional, marcag&o-recaptura, tendénci
populacional, redes sociais, organizacdo sociakiedades né&o-
humanasS$otalia guianensianco dos Abrolhos.



ABSTRACT

Complex systems have fascinated researchers fiorsegleorganization
and emergent properties. Here, | present a lomy-tgudy of two
aspects of a biological self-organizing system:ghpulation and social
dynamics of Sotalia guianensisan endemic delphinid of western
Atlantic Ocean. The population of Guiana dolphinsthe Abrolhos
Bank, eastern Brazil, offers a fine opportunity forodeling such
dynamics through the time and space. This is becélyghe systematic
monitoring spanned for eight years (2002—2009) nmkiemographic
changes of an open population evident; and (2) shelied area
encompassed a highly heterogenic habitat, in aiggraéfom protected
inner river to offshore coral reefs, which makestrtification of the
habitat use a plausible hypothesis. In summarg,ghidy has a twofold
aim: to address how the population changes, proyidh set of
demographic parameter estimates, and how such ebaaffect the
social structure, from pairwise association leeeiite whole population
network patterns. Firstly, the long-term mark-rdceg experiment
(Cormack-Jolly-Seber and Pollock’'s Robust Designjealed a small
population, comprised of resident dolphins and \idials that
temporarily leave or pass through the study areavi@&l rates were
high and constant, expected for animals whoseslifens extend the
study duration. Abundance estimates fluctuatedsiplysdue to balance
of additions and deletions, but were no trend wetealed. The current
monitoring effort had high probability of detect rapt population
declines, which is a better situation than thatrif@ny other monitored
cetacean stocks. Although not sensitive yet to lsubleclines, the
monitoring would identify such trends with feasitdeditional effort
(additional three years). These population chamgee found reflected
in the patterns of social interaction. A concepfuainework for social
network topology of delphinids was suggested, aad predictions
tested by combining spatial, temporal and demogcaggbproaches. The
social network of Guiana dolphins was structuretb ia modular
architecture as predicted, and the individuals’cepase overlap could
not be assigned as a major force driven such tggoldlowever, the
turnover of individuals in the population has temgly split the
associations into the three network modules. Witthie turnover
temporal scale, the population followed a fissiasién dynamics, as
characterized by most fluid acquaintances and fervefeped
associations. Therefore, the principal outcomeghif study are as
follows: (1) a robust baseline, based on open dased population



modeling, for estimating several demographic patarsewas further
attested to photo identification data; (2) It waghlighted that non-
social factors can greatly affect non-human assooianetworks, and
should be accounted for an apposite portrayal akties with different
degrees of fission-fusion dynamics. Such resulistpd the time as one
of the major factors affecting the self-organizatiof our studied
complex system. They also might inspire furthereaesh, which has
both applied and theoretical implications. On tberfer, the suggested
demographic analytical guideline may be appliedtterS. guianensis
populations to allow further comparisons. Such syiséc efforts will
allow a reliable definition of conservation statofthis species, and
optimize conservation efforts. Finally, the themmat framework of
social networks may encourage new working hyposhd3ecognizing
determinants of network topology is an importardpstowards the
identification of mechanisms driving social systenkhis effort,
ultimately, contributes to address how environmeatad biological
characteristics have interacted and shaped thestfied social structure
and dynamics of Delphinidae.

Key words: population dynamics, mark-recapture models, social

network, social organization, non-human societi&stalia guianensis,
Abrolhos Bank.
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INTRODUCAO GERAL

Os sistemas complexos, tanto fisicos quanto bicd&gitém
fascinado cientistas por sua auto-organizagdo @ipdades emergentes
(Amaral & Ottino 2004). Seu estudo € intrigantga g&lo entendimento
das forcas internas que conduzem a formacdo dégmdio sistema
(Camazineet al 2001) ou pelos mecanismos externos a que eles se
adaptam (Amaral & Ottino 2004).

Uma populacdo animal é um exemplo de sistema bauldg
complexo, moldado por diferentes forcas interagiradn longo do
tempo. Entender a estrutura deste sistema reqepostas a duas
questbes basicas: quantos elementos compfem majstecomo eles
interagem e se organizam. Estes questionamentdsvars a descricao
da estrutura populacional e social, respectivamesre dos caminhos
para tal descricdo € partir de um modelo, um peméserente ao
pensamento cientifico e comum a toda inferéncita fem ecologia
(Kéry 2010).

Experimentos de marcagdo-recaptura tém sido contemen
utilizados para descrever a estrutura e dindmicpulpoional de
diversostaxa (e.g, Schaulet al. 2001 Bjorndalet al. 2003 Bradshaw
et al. 2003, Baileyet al. 2004). Classicamente, abundéancia tem sido
estimada mediante modelos de populacéo fechadaetGti. 1978), que
assumem uma situacao estatica. A abordagem méiaeis modelos
de populagdes abertas leva em consideragdo mudsergasrais no
tamanho populacional, como o balanco entre enti(@aacimento,
imigracéo) e saida de individuos (morte, emigragéepretonet al.
1992), principalmente para estimar taxas de sol@avia. Ao combinar
as duas abordagens, € possivel estimar abundanoiarteira acurada a
partir de modelos de populacéo fechada e assim esnbrevivéncia, a
partir de modelos de populagdo aberta (Pollock 198%m disso,
probabilidades de emigragéo temporaria podem d@&tagibbaseando-se
no fato de que individuos da populacdo podem @sdgoniveis para
captura em qualquer momento do estudo (Kemdall. 1997).

Ja o estudo da organizacao social tem se benefidadeoria
de redes complexas como uma das promissoras fertasrae descricdo
e quantificacdo precisa de padrdes (veja revidtemiseet al. 2007,
Croft et al 2008, Weyet al. 2008). Alavancado por avancos na
mecanica estatistica (Albert & Barabéasi 2002), axidede redes tém
guiado uma recente e extensiva busca por padréesdan ecoldgicas,
tanto de comunidades.§.Bascompte 2009) quanto de populac@eg. (
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Aravjo et al 2010). Formalizando a ligacdo entre comportamento
individual e processos populacionais, explorar muesa de redes
sociais permite, portanto, extrair detalhes daiagstt social de sistemas
altamente dindmicos e heterogéneeg.(Lusseau 2003, Crofét al
2004).

O conhecimento detalhado das dinanicas populacimsakial
da maioria das espécies de mamiferos marinhosncantncompleto.
Isto se da em especial devido as dificuldadestiogs que tornam seu
estudo em ambiente natural desafiador, custosonte Igraylor &
Gerrodete 1993). Embora a dindmica de algumas apopes de
cetdceos tenha sido extensivamente estudada, sstagstringem
principalmente a ambientes costeiregy(Verborghet al. 2009, Ramp
et al. 2010) e apenas recentemente tém sido aplicadosdosét
aperfeicoados que levam em conta uma série degiasanaturaise(g.
Currey et al. 2009, Silvaet al. 2009). Consequentemente, muito das
informacdes demograficas disponiveis apresentaxa lpreciséo, o que
interfere no poder de deteccéo de tendéncias popadas (Tayloret al.
2007). Pelo mesmo motivo, a organizacdo social éama que tem
sido explorado mais recentemente, apés o acimulladies de estudos
em longo prazo. Estes revelam a ordem Cetacea aitamente
heterogénea em relacéo a este aspecto (veja Cenalof 998, Manret
al. 2000). As interacdes sociais nesta Ordem osalane o instavel e o
estavel; as estruturas sociais compartilham cafstitas com
mamiferos de alta complexidade cerebral (primatags, Wirsig 1978,
Wrangham 1980; e proboscideos, e.g. Weilgaral 1996), e estdo
sujeitas as restricbes ecoldgicas experimentadaslgons mamiferos
terrestres (artiodactilos, e.g. Jarman 1974; eivauws, e.g. Packeit al
2000).

Sotalia guianensid?.J. Van Bénedén é uma das espécies de
delfinideos que permanece como uma lacuna no condem das
din&micas populacional e social de cetaceos. Oguimeipalmente em
aguas rasas e costeiras e em estudarios da coataidstilda América do
Sul, a partir do sul do Brasil (27°35'S: Sim0es4{988) ao nordeste
da Nicaragua (Carr & Bonde 2000) e possivelmenteddras (15°58'N,
79°54'W: Flores & da Silva 2009), costa Atlanti@aAimérica Central,
provavelmente de maneira descontinua (Boratial. 1991), como
sugerem as areas de vida relativamente pequemgBlores & Bazzalo
2004). Estudos sobre a espécie focam-se predorainante na biologia
geral €.g, Santoset al. 2001, Azevedoet al. 2004 Wedekinet al.
2007) e comportamentoe.¢, Daura-Jorgeet al. 2005 Filla &
Monteiro-Filho 2009).
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Alguns destes aspectos, como comportamento alimenta
reprodutivo, fornecem subsidios para inferéncia gessiveis
mecanismos responsaveis por flutuagbes naturais pamametros
demogréaficos e na determinacdo de padrBes de 8icidb. Eles
podem, em dltima instancia, influenciar o balangragla-saida de
individuos da populacdo e o balango custo-benetfiaidormacgéo de
grupos. Por exemplo, sabe-se @uguianensisonsome principalmente
espécies de peixes demersais e pelagicos, tarambentes costeiros
estuarinos quanto marinhos, além cefalopodeg. Di Beneditto &
Ramos 2004, Daura-Jorge al. 2011, Pansardt al.in pres$ e alguns
crustaceos (Santes al. 2002). O forrageio em diferentes habitats pode
interferir na presenca de individuos nas areastlel@ que geralmente
estdo mais restritas a aguas costeiro-estuarimraguestdes logisticas.
J& o efeito combinado da maturacéo tardia (madsis: anos, fémeas:
cinco a oito, Di Beneditto & Ramos 2004), recrutatoeao longo do
ano com periodo de 11-12 meses de gestacdo (Ross&iro-Filho
2002), e ciclo reprodutivo estimado em dois an@ni&et al 2001,
Rosas & Monteiro-Filho 2002, Di Beneditto & Ramo802) sugere
gue, em condi¢des normais, a entrada-saida dernvegdif populacéo
tenha um influéncia reduzida, uma vez que os esttelm duracdo
muito menor que a expectativa de vida. Em uma petsfa social, o
forrageio ocorre tanto individualmente quanto empgs de diversos
tamanhos; e o sistema de acasalamento é consigaxadiscuo (Rosas
& Monteiro-Filho 2002). Estas caracteristicas, soasa a
particularidades de exposicdo do habitat e disjim@de de presas da
area de estud@(g. Santos & Rosso 2007), poderiam conferir diferentes
graus de dinamismo na formacé&o de grupos.

Contudo, esforcos de estimativa de abundancia osidie
sdo pontuais, e demais pardmetros populacionaisp sobrevivéncia,
taxa de emigracdo e tendéncia populacional, samuaescidos para a
espécie. Portanto, um monitoramento efetivo queegée estimativas
robustas de uma série de parametros populacionaisaénecessidade
imediata. Constitui 0 primeiro passo na definicdo status de
conservacao da espécie (classificado creficiente em dadosSecchi
2009), um conceito que norteia os esfor¢cos de ceasED.

J4 a maioria das informacgfes disponiveis sobreramtue
duracdo das relacdes sociais da espécie restngee€omposicdo e
tamanho de grupo e suas correlacbes com compottzsnervariaveis
ambientais (e.g. Azevedd al. 2005, Daura-Jorget al. 2005, Santos &
Rosso 2007). As tentativas de esclarecimento danagcao social séo
ainda mais escassas e restritas a mesma popul&sdoarfo de
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Cananéia, Sudeste do Brasil: Monteiro-Filho 200@nt& & Rosso
2008). Embora conduzidas com a mesma populaciddyerrh
conclusdes contrastantes, possivelmente devido i&paritlades
metodoldgicas. Enquanto um propfe trés diferenteausg de
estabilidade social (“familia”, a mais frequent@racterizada pelo
relacionamento e coesdo entre alguns individuosotenpialmente
estavel por algum tempo; “grupo”, ou associacageefamilias; e
individuos solitarios, raros e que posteriormentagdvam-se membros
de familias) (Monteiro-Filho 2000), outros contestaugerindo que
associacdes estaveis ndo sdo caracteristicas pestdacdo e que
relacBes sociais fluidas podem ser o padréo pStagaianensigSantos
& Rosso 2008). Este impasse evidencia a necessidadampliar
esforcos para esclarecer a questdo. Embora indiidsejam
freqientemente vistos em pequenos grupasGeise 1991, Geiset al.
1999, Edwards & Schnell 2001, Daura-Jorge al. 2005), outras
configuracdes de grupo ocorrem ao longo da sua deeacorréncia.
Diferencas latitudinais nas condi¢cdes ambienthishdancia de presas e
protecdo do ambiente (batimetria e exposi¢cdo actbrento), promovem
variagbes no agrupamento intraespecifico (Lodi &zkle1998, Lodi
2003, Santos & Rosso 2007) e no uso do habitat {eeglekinet al.
2007, Rossi-Santoset al 2007). Esta variacdo resultante da
disponibilidade e uso de recursos e do risco ddagé® também é bem
documentada para outros delfinideos (Wetlsal 1987, Connoet al
2000, Gygax 2002). Portanto, sdo contribuicbesvaelkes para a
discussdo da estrutura social: a inclusdo de daelasutra populacgéo,
gue habita estuario diferente e pode estar sugeilistintas condicdes
ambientais; e a utilizacdo de abordagens metod@sgnais recentes.
Este € um estudo em longo-prazo que consiste em um
experimento descritivo e que testa hipéteses smtmiegia populacional
e social deS. guianensisA populacdo do Estuério do Rio Caravelas
(BA), situado no Banco dos Abrolhos, costa lesteBoasil, oferece-se
como uma boa oportunidade para modelagem da diaddgc um
sistema biolégico auto-organizado, através do tempespaco. Isso
porque (1) o monitoramento sistematico estendesseifd anos (2002-
2009), tornando evidentes mudancas demograficasmde populacéo
aberta; e (2) porque a area de estudo abrange bitathaltamente
heterogéneo, em um gradiente de aguas estuarteasais até recifes de
coral distantes da costa, 0 que torna a estratficalo uso do habitat
uma possibilidade. O objetivo deste trabalho é,tap¢w, duplo:
investigar as mudancas demograficas ao longo dpaemcomo elas
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afetam a estrutura social, do nivel individual der@e interacées da
populacgéao.

No primeiro capitulo, apresenta-se a descricdo idanidca
populacional, mediante a estimativa de uma série pdéimetros
demogréficos, como sobrevivéncia e abundancia, ma populacdo
composta por individuos residentes e emigrantepdsirios. Por fim,
testa-se a hipétese da existéncia de tendéncidaoignal. O segundo
capitulo sugere um modelo conceitual para previgidopologias de
redes sociais de delfinideos e testa-o investigandmganizacédo social
da populagdo em estudBspecificamente, descreve-se a estrutura das
associacgdes entre individuos, prevendo a emergéaciana estrutura
modular na rede social, devido as esperadas ralag@erindividuais
fluidas (veja Santos & Rosso 2008). Sabendo querefsitespaco-
temporais podem influenciar a oportunidade dosviddbs interagirem
(Kappeler & van Schaik 2002, Aureéit al. 2008), o estudo testa
potenciais mecanismos néo-sociais que poderianitaesm uma rede
estruturada em modulos. Devido a alta complexididabitat que a
area de estudo abrange, primeiramente foi invekiiga diferencas no
uso do espacgo poderiam corresponder as associigiesenciais. Em
seguida, padrdes temporais de associacdo entrgidunds foram
investigadas, baseada na dindmica prevista parapoma#acio aberta,
revelando novosnsights sobre influéncia de fatores nao-sociais nos
padrbes de sociabilidade ndo-humana.
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Abstract

This study represents the first attempt to stuéypgbpulation dynamics
of Guiana dolphins Sotalia guianensjs by evaluating a set of
demographic parameters. The population of the @&aav River
Estuary, eastern Brazil, was systematically moedothrough a long-
term mark-recapture experiment (2002-2009). Abuodaestimates
revealed a small population (57 to 124 dolphinejngrised of resident
dolphins and individuals that temporarily leave pass through the
study area. Temporary emigration from the estuaryadjacencies
(y"=0.33£0.07 SE) and return rate ¥¥0.67) were moderate and
constant, indicating that some dolphins use laegens. Survival rate
(¢p=0.88+0.07 SE) and abundance were constant throtighe study
period. Power analysis showed that the current toong effort have
high probability of detecting abrupt population kiees (1$=0.9).
Although the monitoring is not yet sensitive to #eitpopulation trends,
sufficient time to identify them is feasible (addital three years).
Despite such apparent stability, this populatiemaany others, inhabits
waters exposed to multiple human-related threaggenOand closed
population modeling applied to photo identificatidata provides a
robust baseline for estimating several demograparameters and can
be applied to other populations to allow furthemgarisons. Such
synergistic efforts will allow a reliable definitioof conservation status
of this species.



42
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Sotalia guianensishbrolhos Bank.
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Introduction

Mark-recapture surveys are commonly used to estimat
demographic parameters of several vertebrate taxbyding marine
mammals €.g, Schaulet al. 2001, Bjorndalet al. 2003 Bradshawet al.
2003, 2007, Baileyet al. 2004, Converseet al. 2006). Classically,
abundance has been estimated through closed poputaddeling (Otis
et al. 1978), which assumes a static population. The meakstic open
population models account for temporal changeopulation size as a
balance between birth-immigration and death-emgnafLebretonet
al. 1992), chiefly to estimate survival rates. By gsancombination of
both approaches, it is possible to accurately esénmabundance from
closed models and survival rate from open modetdiqék 1982).
Additionally, the probability of temporary emigrati can be addressed
based on the fact that a given individual couldibavailable for capture
at any time during the study (Kendatlal. 1997).

Detailed knowledge of the dynamics of most marireemmal
populations is still incomplete. Logistical congtta mean that studying
free-ranging cetaceans can be challenging, expenswd time-
consuming (see Taylor and Gerrodette 1993). As @asemuence,
assessment of population parameters has concehtmatgopulations of
large migratory baleen whales.¢, Chaloupkeet al. 1999 Mizroch et
al. 2004, Rampet al. 2006 Rampet al. 2010) or cetaceans that inhabit
coastal areage(g, Verborghet al. 2009). For the same reason, much of
the available information has low precision, whieads to low power to
detect trends in the stocks (see Tagoal. 2007).

Coastal dolphin populations have been the subjesbme of
these studiese(g, Cameronret al. 1999, Parraet al. 200§ Lukoschek
and Chilvers 2008Reisinger and Karczmarski 2010). However, even
for the well-studied cosmopolitan bottlenose datpfiiursiopsspp.), we
lack vital information for most populations. Forsfance, few studies
have reported population-specific survival ratest (fee Curreet al.
2009). Recently, however, such estimation procedunave been
improved by including the effects of transience ateimporary
emigration (Silveet al. 2009).

Guiana dolphins Sotalia guianens)s occur exclusively in
shallow and coastal waters of the western Atlabtiean (15°N to 27°S,
Silva and Best 1996). Recent studies have primadigressed general
biology (.9, Santoset al. 2001, Azevedoet al. 2004 Wedekinet al.
2007) and behavior(g, Daura-Jorget al. 2005 Filla and Monteiro-
Filho 2009). There are few instantaneous estimateSuiana dolphin
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abundance or density, and both survival rates apdlption trends are
unknown. This central theme in ecology highlight& @f the main gaps
in the body of knowledge about this species. Moeeovas
anthropogenic disturbances increase, populationardigs receives
increased emphasis, as it supplies appropriateytarsl tools for
conservation purposes.

Guiana dolphin populations are frequently exposeditman
activities because they inhabit coastal areas (Baret al. 1991).
Mortality due to accidentale(g, Di Beneditto, 2003) and intentional
catches (Sholkkt al. 2008), boat strikese(g, Van Bressemet al. 2007),
behavioral disturbances due to boat traffiog( Aradjo et al. 2008),
skin diseasese(g, Van Bressenet al. 2009), and high levels of
persistent contaminants in tissuesg( Yogui et al. 2003) are known
threats to this species. Effective monitoring e@ffahat provide robust
estimates of a set of population parameters aneftire a necessity.
More importantly, these studies will fill the daéad knowledge gaps
that currently preclude a definition of conservatstatus for this species
(Data deficient- Reevegt al. 2008).

We conducted a long-term mark-recapture experinoenthe
eastern Brazilian coast to study the populationadyins of Guiana
dolphins. Our main objective was to estimate keyubation parameters
such as survival and abundance of a population oeetpof resident
and transient individuals in a heterogeneous habifta investigate
possible changes in population size, a further @firthis study was to
assess our likelihood of detecting a populatioridec

Materials and Methods
Study area

This study encompassed the Caravelas River Es{liargo's -
39°30'W) and adjacent coastal areas, spanning thare700 kmh It is
located on the Abrolhos Bank, an extension of ihatinental shelf on
the eastern coast of Brazil (Fig. 1). The regiohighly heterogeneous,
characterized by a mosaic of open waters protebtedcoral reef
barriers, mangrove forests with channels, sandghe=a and banks of
shallow waters.
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Figure 1. Caravelas River Estuary, coastal adjacent watetiscaral reefs in the Abrolhos Bank, eastern coa@razil. Black
dots indicate groups with identified Guiana dolphin
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Data collection and sampling design

A mark-recapture experiment was conducted usingviohaohl
recognition through photo identification. For eaaghimal a capture
history was created, where a capture event in glgagmoccasion was
denoted as 1 (here a photographic record) and aapbtire as 0. From
maximum likelihood estimation procedures, we detitlee population
parameters that maximize the likelihood of obsemecapture histories
frequencies (Lebretoet al. 1992).

Data collection was carried out during surveys gissn5 m
inflatable boat (50 hp outboard engine) between22&dd 2005, and
using a 12 m wooden vessel (33 hp inboard engime) 2006 to 2009.
Routes aimed to cover the study area homogeneamtyt covered an
average of 30 nmi (56.6 km), including departingl amriving at the
estuary, and aimed to sequentially sample fouregdfit sub-regions
within the study area (North, East, Southeast,Zmath — Fig. 1). Given
the period required to cover the whole area, fammnsecutive sampling
days were pooled and treated as a capture occasion.

Groups of dolphins were searched at slow speedb(6kn) by
two to five observers, alternating in three positito cover 18Dof the
visual field. For all sightings, we recorded gegupia coordinates, time,
and the number of individuals. We attempted to pii@ph the dorsal
fin of all dolphins in the group, taking as manyofiis as possible of
both sides and without individual preferences. Beeaindividuals
cannot be recognized during the data collectioa,dpture effort was
assumed equal for all animals. From April 2002 tay J2004,
photographs were taken using a SLR camera (Nik@ON\-equipped
with 300, 70-300, and 120-400 mm lenses. In Aug0s¥, we switched
to digital SLR cameras (Nikon D70 and more recei80) and the
same lenses.

Photo identification

Guiana dolphins were identified by natural markiras the
dorsal fin, a technique widely used for individuedcognition of
cetacean species (Hammoet al. 1990), including Guiana dolphins
(e.g, Flores, 1999). During 2002 and 2004, the slidemsf were
projected onto a white surface to produce profitawings of each
marked dorsal fin (adapted from Defranal. 1990; see Rossi-Santes
al. 2007). The digital catalogue with photos from #rgire period was
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periodically reviewed and included only high quafihotographs (good
focus and perpendicular angle). To minimize misiifieation, the
photo analysis was restricted to individuals witheay distinctive dorsal
fin (at least one long-lasting notch on the trailedge, Hammondt al.
1990). Calves and non-identifiable individuals et or indistinctive
dorsal fin, or captured only on low quality photaghs) were not
included in our analyses.

Discovery curves

To visualize differences in sampling effort amoregars and to
provide a valid comparison of the number of idesdif individuals
under varying sampling effort, discovery curves avgenerated using
the same method as for sample-based rarefactiore<\Gotelli and
Colwell 2001). These are more robust surrogateghef traditional
cumulative curves, representing the means of refdea-sampling of
the capture occasions at random and plotting tlezage number of
marked individuals (Gotelli and Colwell 2001). Raspling was done
by Monte Carlo methods, setting 1000 iterations #mel expected
curves were developed as a function of numbermpses (Mao Tau) in
the software EstimateS (Colwell RK, http://purl@mokg/estimates).

Mark-recapture analysis

Mark-recapture analyses were conducted using RroffARK
(White and Burnham 1999). We used Cormack-JollyeBefCJS)
models for open populations (Cormack 198dlly 1965 Seber 1965) to
estimate apparent survivab)(and capture probability (p). Departing
from the full time varying CJS model, a set of ddate models were
developed to test different effects on the esticthgbarameters: no
variation (.), time-dependencet);( time-since marking,i.e., age-
dependencea@); and the set of dolphins identified in a givercagion
(cohor)) (Lebretonet al. 1992). Because sampling effort varied during
the study, we also introducedariod effect in the models, representing
the variation of effort among the first three yeansl the last four years.
The first three years were characterized by broadenpling efforts
with analogue cameras, whereas in the later ye#iet was reduced
and digital cameras were used.
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Mark-recapture models make the following assumgti¢see
Amstrupet al. 2005): (1) marks are not lost during the study;nfarks
are correctly recognized on recapture; (3) indiglduare instantly
released after being marked; (4) intervals betwssanpling occasions
are longer than the duration of the sample; (5)nalividuals observed
during a given sampling occasion have the sameapitily of surviving
to the next one; (6) study area does not vary; @dmarked and
unmarked animals have equal capturability. We detie the validation
of open population assumptions for dolphins diseddsy Silvaet al.
(2009). In addition, we validated the assumptiohequal probabilities
of capture and survival by the goodness-of-fit tesing program
RELEASE (Lebreton et al. 1992). Even if one or massumptions
failed, the occurrence and magnitude of the rexylgxtra-binomial
variation pverdispersionsee Andersomt al. 1994) was evaluated and
accounted for. We estimated the variance inflafator (C) through
the MedianC and bootstrap approaches, available in Program MARK
(White and Burnham 1999), and used the highesevaladjust the lack
of fit of the models.

Pollock’s Robust Design (RD) (Pollock 1982; Kendetl al.
1995, 1997) was applied to assess population gE emigration
pattern. A year was considered as the primary gedond used to
estimate apparent survival. The 4-day pooled capbacasions within
each year were set as the secondary periods artl tosestimate
abundance through closed-population models. Thefivaitbns on RD
by Kendallet al. (1997), which allow for an animal in the populatim
be unavailable for capture at a given time, weredut estimate
temporary emigration.

The models based on the RD were composed of thevfal
parametersp; = the apparent survival probability from primamriodt
to (t + 1); pw Gt= the probability that an individual available fmapture
in periodt would be recaptured in the secondary samsplethe primary
periodt; y'; y"; = the probability that an individual would be unéable
for capture during primary periodgiven that it was unavailable or
available (respectively) in the previous periog.( the probability of

temporary emigration). Population siz&l{j was estimated using the
full parameterization of maximum likelihood availabin MARK
(White and Burnham 1999). The following models weesigned using
the notation provided by Kendadt al. (1997): Markovian emigration
models ¢’ v”), where the probability of availability depends whether
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the animal was available for capture; random ertimgmamodels ' =
v"), where the probability of availability is compédy random; and
models with no emigratiory’(=y” = 0).

The eight classical closed population models (@tial. 1978)
used in the RD (Kendadit al. 1995) have other specific assumptions for
the secondary period (for assessment of assumptiionstacean data,
see Wilsoret al. 1999 Bearziet al. 2008): (1) demographic closure; (2)
lack of behavioral responses to capture procedure,animals do not
respond to being captured in a way that affectsr teebsequent
probability of recapture; and (3) homogeneity optcae probabilities,
i.e., within a sampling occasion, all animals in the dapian have equal
probability of being capturedBehavioral response models were
discarded because we assumaedriori there were no reactions to the
capture procedure involving photo identificatiomap dependenge
Thus, the capture probability (p) was consideregbétp the recapture
probability €). Individual heterogeneity was included using the
Pledger’'s mixture models, with two mixtures of ecaptprobabilities (2-
pi) (Pledger 2000). However, heterogeneity in capprobabilities was
included only in those models with no emigratioheTinfluence of time
was tested for all parameters, both in primaryqueyi€) and secondary
periods §).

For the CJS approach, the most appropriate modekelacted
through the Quasi-Akaike Information Criterion (@ Andersonet
al. 1994), while the Akaike Information Criterion (AJCwas used for
RD models. In all cases, specific biological hygsis between nested
models were tested using likelihood ratio tests TLMurnham and
Anderson 2002). Normalized QAJQveights — or AlG weights for RD
models — were used to measure the support forea gnodel relative to
the others. Parameter estimates were averagedsagfasodels based
on QAICc - or AlCc — weights (Burnham and Andersz0?2).

Trends in abundance

Because the abundance estima(ués) refer exclusively to the
well-marked animals in the population, we corredt@d to include the

unmarked individuals in the total abundance eséméNg). For each

year, the proportion of identifiable individualsthin the population®)
was estimated as the number of well marked indaigldivided by the
total number of individuals observed in each groaygraged over all
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groups €f Silva et al. 2009). Other similar methods for ghestimation
are available €.g, Williams et al. 1993), but particularities of ghi
population make our approach feasible. Since Gudighins usually
form small groups in the Caravelas River Estuargb{é 1), and

generally a single group was sighted in each déy(1.26 + 0.33 SD),

the number of marked individuals in each group @dad estimated with
precision.

A

The total abundance estimates were obtaine&llgyz % and

the variances of total population size were esgchaising the delta
method (Seber 1982) as:

A ~ ofvarlN|] 1-6
var(Ng): N, —A(—) + =
N 2 né
wheren is the total number of individuals from Whidﬁl was estimated.

Log-normal confidence intervals for total populatisize (see Burnham
et al. 1987) were calculated as:

c=orf 2, ol v )

2
wherez is the normal deviatey = 0.05, and CV is the coefficient of
variation.

To determine the probability of detecting a lingexpulation
trend in the corrected abundance estimates, werpestl a statistical
power analysis (Fairweather 1991). By definitiontrend exists when
the regression has a slope significantly differértm zero (see
Gerrodette 1987). Power analysis provides the fibtyaof correctly
rejecting the null hypothesis of constant poputatrchen it is actually
increasing or decreasing (18; wherep is the probability of Type 2
error).

To explore the monitoring efficiency, we simulatiseb kinds
of changes in the population: a precipitous deckie50% in the
abundance during the entire monitoring peried( Tayloret al. 2007)
and a modest decline of 5% per yearg( Lukoschek and Chilvers
2008). We analyzed the effort necessary to deteset changes with an
acceptable power of 80% certainty (see Tagtal. 2007).

Analyses were conducted using the software TRENDS
(Gerrodette 1987, 1993), setting the parametersfoilews: the
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significance criteriono. = 0.05; one-tailed test (because we are only
concerned with a decrease); equal intervals betwaepling occasions

and exponential type of change. Corrected abundasii@ates Ng)

were transformed to the natural logarithm beforefgoming the
regression. Variance usually fluctuates accordmgdme function of
the abundance (Gerrodette 1993), and for mark-tegstimates, the
coefficient of variation (CV) on abundance is expdc to be
proportional to the square root of abundance (Gette 1987).
However, it can also vary due to the species aadhththod used. To

-1
test this, we plotted CVs of each year agaiq‘Ne and ( N g) (cf

Gerrodette 1987). Since no clear relationship areseassumed CVs
were constant with respect to abundance and tHoglated the overall
CV of the monitoring period by averaging the annOsls (Gerrodette
1993).

Results
Sampling effort

From 2002 to 2009, sampling was performed on 38% dad
covered more than 13,425 nmi. We recorded 380 grdofaling 1,702
sighted dolphins (10% calves) (Table 1). A total 88 individuals were
identified with good-quality photographs, and 12reveesighted in all
years. Greater sampling effort was employed betwag62 and 2004
than in the later years. The number of individuaith long-lasting
marks included in the analysis varied among yedablé 1). The
rarefaction curves for 2002 to 2004 tended to Brabwith narrower
confidence intervals (Fig. 2A, B). The opposite viasnd for surveys
from 2005 on, when all confidence intervals werdewj and the curves
were non-asymptotic (Fig. 2B, C, D). The number ngiw photo
identified individuals per year fluctuated from (Z04) to 40 (2007),
while the recapture rate varied from 55% (20073686 (2004). From
30% to 64% of photo identified dolphins in one ye&re recaptured in
the subsequent year (Table 2).



52

Table 1. Summary of annual sampling effort and basic resuiitthe long-term mark-recapture experiment witliaBa dolphins
(Sotalia guianensjscarried out in the Caravelas River Estuary, easeaail.

Year Samping effor obsl:?\tlition cipciﬁ)r/e Sighted  Mean group size Toéillsrll?:;ed
(mni) (h) (h) occasions 9M0UPS +SD (calves)

2002 2,340.6 327.0 60.7 11 72 42+21 316 (39)
2003 2,784.4  465.3 58.3 19 78 52+3.1 385 (34)
2004 2,214.1  280.7 27.5 14 53 40+18 201 (13)
2005 1,529.4 258.8 44.9 12 40 56+4.1 217 (29)
2006 668.6  122.1 221 6 22 42+1.2 100 (15)
2007 1,035.7 217.6 16.7 8 37 54+28 165 (17)
2008 1,518.3 297.8 21.7 11 46 45+25 177 (15)

2009 11,3334 266.0 16.1 11 32 46+22 141 (8)
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Figure 2. Sample-based rarefaction curves of cumulativeaghaentified Guiana dolphins in the Caravelas Ristuary from
2002 to 2009. Black curves represent the Mao Tamates and grey curves are the respective 95%deorde intervals.



54

Table 2. M-array of capture-recapture data used for opgnation models. R = Number of individuals marked (photo
identified for the first time) for each occasigmm(i,j) = number of individuals marked in occasioand recapture for the first

time in a capture occasignr(i) = total of individuals marked in occasioand recaptured throughout the subsequent occasions

Occasions R(i) ML) r(i)
2003 2004 2005 2006 2007 2008 2009
2002 37 24 1 0 1 3 1 0 30
2003 31 10 10 4 2 0 0 26
2004 15 9 3 1 0 0 13
2005 34 10 7 1 2 20
2006 24 12 4 2 18
2007 40 12 10 22

2008 26 15 15
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Model selection for estimating population paramster

From the results of all components of the goodiégi-test,
we did not violate the assumptions of equal prdbis of capture
(TEST 2; p = 0.778) and survival (TEST 3; p = 062Phe most
parameterized CJS model fitted our data satisfilctorhe bootstrap
approach estimated the highest variation inflatiactor, which was
marginally above 1 and indicated no substantialrdispersion €=
1.25). It may be caused by the presence of tempe@maigrants in the
population, or other source of heterogeneity oftwagpprobability (see
below). Despite the lack of evidence for such dactf we adjusted the
models with ¢ to correct any potential violation of assumptiaors
intrinsic variations in the population.

In general, the CJS models with time (Table 3: nods, 13,
12) or age-dependence (models 6, 3) of survival mmwdlels that
allowed this parameter to vary with sampling effortodels 14, 9, 5)
poorly fit the data or were not parsimonious. Samyl, models with
capture probability dependent on time (models 12453), period
(models 15, 10) or both (models 16, 14, 11, 7) ptswided a poor fit to
the data. Thus, the best CJS model had constavivaluand capture
probability varying in relation to cohort (model. Ilhe LRT agreed
with the best model selected by QAl@hen comparing nested models.
Moreover, there were no additional effects pafriod (model 2;P =
0.282) or time (model 1B = 0.333) on capture probability.

RD models not accounting for temporary emigratioony fit
the data (Table 4: models 9-12), and emigratiotadities seemed to
follow a Random Movement Model (model 1). In gehdlase models
in which survival was time-dependent (models 6-& d®-12) and
which allowed capture probability to vary betweetandary periods
(model 12) were not parsimonious or poorly fit thea. Thus, the best
RD model had random and constant emigration préibebj constant
survival and time-dependent capture probabilityweetn and within
primary periods (model 1). When comparing nestediatsy the LRT
corroborated a constant survival (model P4,= 0.205) and random
emigration pattern (model 2 = 0.165), but it suggested a temporal
effect on the probability of an individual be unéatble for capture
model 3,P = 0.012).
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Table 3. Cormack-Jolly-Seber models for survival) @nd capture probability (p) ranked by the low@#IC.. QAIC, weight
indicates the strength of evidence for a given rhddedel notation: constant parameter (.), tije 4ge &2), cohort or period
dependence.

Model QAICc  AQAICc  QAICc Weights  Likelihood  No. Parameters

1 {o(.) p(cohord} 411.621 0 0.468 1 8

2 {o () p(cohort X period)} 413.487 1.87 0.184 0.393 10
3 {0 (@2 p)} 413.487 1.87 0.184 0.393 9
4 {o () pt)} 415.639 4.02 0.063 0.134 8
5 {o¢ (period pt)} 417.302 5.68 0.027 0.058 9
6 {0 @2 p()} 417.414 5.79 0.026 0.055 3
7 {o () pt + period)} 417.825 6.21 0.021 0.045 9
8 {o()p()} 419.019 7.40 0.012 0.025 2
9 {o (periog p(.)} 420.802 9.18 0.005 0.010 3
10 {¢ (.) p(period} 420.929 9.31 0.005 0.010 3
11 {¢ () pt X period} 422.266 10.64 0.002 0.005 11
12 {¢ (t) p@)} 423.331 11.71 0.001 0.003 14
13 {o (t) p(.)} 423.561 11.94 0.001 0.003 8
14 {¢ (period) p(t X period} 423.996 12.38 0.001 0.002 12
15 {o¢ (t) p(period} 425.732 14.11 0 0.001 9

16 {¢ (.) p(cohort X t)} 439523  27.90 0 0

N
©
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Table 4. Pollock’'s Robust Design models for surviva),(temporary emigrationy), capture (p) and recapture probabilities (c)
ranked by the lowest AICAIC, weight indicates the strength of evidence fonegimodel. Model notation: no emigratiort €
v = 0); Markovian emigrationy{(x) y"(x)); random emigrationy{(x) = y" (x)); mixture proportion (pi); no behavior effegi(x)
= c(x)); constant parameter (.) or time-dependénc.

Model AlIC AAIC. AIC.Weights Likelihood No. Parameters
1 {o()Y"() =v'(.) p(st) = c(sh} 1,717.222 0 0.540 1.000 102
2 {o()Y"() ¥'() plYH = cishH} 1,718.401 1.180 0.300 0.555 103
3 {o() ¥"(t) =7'(t) p(st) = c(sh)} 1,719.735 2.510 0.154 0.285 108
4 {o(® v"() =7'() p(sh) = csh)} 1,727.640 10.420 0.003 0.006 108
5 {o()Y"(®) y'(®) p(st) = c(sD)} 1,728.688 11.470 0.002 0.003 114
6 {o(® v"() ¥'() p(st) = c(sh} 1,729.797 12.580 0.001 0.002 109
7 {o(®) v"(t) =v'(t) p(st) = c(sh} 1,731.990 14.770 0.000 0.001 114
8 {o@® v"(t) v'(t) p(sY) = csh} 1,744.131 26.910 0 0 120
9 {o(.) y"=y'=0 pt) = c(sh)} 1,764.346 47.120 0 0 101
10 {o(t) y"=vy'=0 pi(.) p&)} 1,768.690 51.470 0 0 32
11 {o(t) y"=v=0 p6t) = c(sh} 1,772.300 55.080 0 0 107
12 {o(t) y"=v=0 p@) = c)} 1,880.055 162.830 0 0 23
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Survival and capture probability

Apparent survival rates were high and stable dutitggstudy.
The model-averaged estimates of both approacheddprb similar
results: CJS¢ = 0.88 + 0.07 SE, 95% CIl = 0.67 — 0.96; RD= 0.89 +
0.03 SE, 95% CI =0.82 — 0.94.

CJS models detected fluctuations in recapture [itities
between cohorts throughout the monitoring (Fig. Gypturability was
lower for the 2004 cohort (p = 0.215 £ 0.143 SH) eeached maximum
values in 2003 (p = 0.629 £ 0.124) and 2009 (p63®+ 0.186).
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Figure 3. Capture probability estimates for the seven cehaft Guiana
dolphins in the Caravelas River Estuary, basedcheraveraged Cormack-Jolly-
Seber model. Whiskers represent standard error.

Emigration probability

We used model-averaged results from the RD models t
investigate individual movements. Specifically, westimated the
probability that an individual available for capuron previous
occasions temporarily emigrated from the study ai¢a and the
probability that an individual that was outside tbieidy area on a
previous occasion remained outsideyij.(Under a Random Movement
model, temporary individual emigration from the gded area to
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neighboring regions was the same for a given emigramaining
outside of the study areg’(= y' = 0.33 £ 0.07 SE; 95% CI = 0.20 —
0.49). Thus, the probability of dolphins remainiimgthe study area
between capture occasions (@) and the return rate of temporary
emigrants to the study area were equa}(% 1-y' = 0.67). In addition,
the probability that a given dolphin moved betwées study area and
the adjacent areas appeared not to depend onc#sido during the
previous sampling occasion (see Kendalhl. 1997).

Abundance estimates

The number of dolphins using the study area vadstbng
years, though not significantly. The averaged RQiehgielded annual
abundance estimates ranging from 25 to 69 marképhihs, which
were corrected to a total of 57 to 124 individu@able 5). Even with
apparent peaks in the years 2004 and 2009, abundeax apparently
constant across the years (Fig. 4).
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Table 5. Abundance estimatesN ) of the Guiana dolphin population in the CaraveRiger Estuary for each year from the

averaged Robust Design model, with correctiong() to include the unmarked individuals.

Proportion of

marked dolphins RD Abundance Estimates

~

Year 0 SE @) N CV 95%CI N, CV  95%Cl
2002 0.53 0065 37 0027 35-39 70 0123 55-89
2003 0.39 0055 31 0031 29-33 79 0143 60-105
2004 0.24 0060 25 0251 13-37 105 0.354 53-204
2005 0.54 0059 37 0061 32-41 67 0117 55-86
2006 0.59 0091 34 0.163 23-44 57 0215 38-87
2007 0.55 0062 55 0.128 41-69 100 0.169 72-139
2008 0.38 0079 34 0.144 25-43 89 0.246 56-144

2009 0.56 0.078 69 0.153 48-90 124 0.201 83-182
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Figure 4. Regression line of In-transformed annual abundaestmates
(through averaged RD model and theta correction}thef Guiana dolphin
population in the Caravelas River Estuary. Whiskepmesent 95% confidence
intervals.

Trends in abundance

The regression of the corrected abundance estirr(a%g.)

throughout the monitoring period was not significén= 1.372,P =
0.219; Fig. 4). The precision of estimation was erate (CV = 0.196;
see Tayloret al. 2007), and the statistical power to detect thengha
indicated by the regression coefficient (b = 0.0&4F reasonable (1B-
= 0.43).

The minimum rate of population decline detectabléthw
acceptable statistical power (B = 0.8) was an overall decrease of 45%
or an annual decrease of 8%. Our monitoring shosugficient power
(1 —p = 0.90) to detect a precipitous decline of 50%hi& population
during the entire study. In order to detect a sligécrease of 5% per
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year (1 -8 = 0.45), additional three years to our samplirfgreto date
would be required (eleven years of monitoring; Big.

1.0~
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) O 50% overall
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Figure 5. Statistical power to detect changes in the pojulabf Guiana
dolphins in the Caravelas River Estuary under t¥fferegnt scenarios: a decline
of 50% during the entire monitoring period and alide of 5% per year. The
horizontal dashed line represents a probabilitB@¥ of detecting a change.
Asterisk represents the current monitoring period.

Discussion

There are three important outcomes of this studgmFa local
perspective, we have highlighted the importance lofg-term
monitoring in understanding the hitherto unknowpydation dynamics
of Guiana dolphins within a highly heterogeneouditah. From a
regional view, the first estimates of several pafioh parameters are
provided for this specie®ur work helps to fill the knowledge gaps that
preclude definition of conservation status for @aiadolphins, as
anthropogenic disturbances threaten many popufatiom a broader
scale, our results confirm the feasibility of monig frameworks
based on robust mark-recapture modeling of fregingncetacean data.
Survival



63

The most parsimonious models considered a conatahhigh
apparent survival probability throughout the stymbriod. High adult
survival is expected for large and slowly reprodgcmammals, whose
life span is longer than the study duratieng( Zeh et al. 2002).
Although there is no other survival estimate awddafor Guiana
dolphins, our survival rate is similar to that obtttenose dolphins
(Tursiops truncatus Few studies have derived survival probabilités
small cetaceans from mark-recapture analygeg, (Cameronet al.
1999, Curreyet al. 2009 Silva et al. 2009), but other methodologies
(e.g, Wells and Scott 1990, Stolen and Barlow 2003)eha&so shown
adults with relatively high survival probabilities.

Capturability

Capture probabilities fluctuated across cohortsl endicated
that individuals captured for the first time in baear showed different
probabilities of being recaptured. This parameterekpected to be
constant across cohorts only when recapture islaindamong all
individuals. Since it is a product of the probdbibf being detected and
of being present in the sampled area (Lebretbal. 1992), one may
expect cohorts to differ due to differences in slamgp effort and
individual site fidelity.

We considered two potential explanations for valitgbin
capture probabilities. First, differences in our mibaring scheme,
especially the switch from analogical to digital opbgraphic
equipments, were expected to lead to variationsapturability. With
less cost, more photographs were taken and lalgragols for photo
manipulation €.g, zoom, contrast) became more accessible. Thus,
capture efficiency may be enhanced using digitalt@hdentification
techniques (Markowitzt al. 2003). However, models incorporating
such sampling variation in capture probability pwpdit our data and
actually failed to explain such fluctuations.

Alternatively, capture probability may have beefiu@nced by
variations in residence patterns. Since transiephins have high
probability of being unavailable for capture on seduent occasions
(Pradelet al. 1997), a higher proportion of these individualsaigiven
year will result in a lower capture probability. dmr case, fluctuations
in capture probability matched the number of phapbed dolphins in
each year, which in turn reflected the relativeportion of non-resident
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individuals sampled annually (see Silgaal. 2009). This situation is
corroborated by the existence of dolphins pass$ingugh our study area
(Rossi-Santost al. 2007) and by the evidence of an annual variation i
emigration probabilities (based on LRT results).

Emigration patterns

Movements of animals can invalidate the assumptidn
homogeneous capture probabilities (Lebretoral. 1992). Variation in
site fidelity among individuals has been suggestedhis speciesd.g,
Santoset al. 2001, Azevedoet al. 2004) and for our studied population
as well. The latter is composed of a core of yeard long-term
resident individuals and many others that show $ite fidelity to the
Caravelas River Estuary (Rossi-Santts al. 2007). This evidence
indicates that dolphins temporarily emigrate fromiramigrate to our
study area. Therefore, by relying on RD generamé&aork, it was
possible to quantify such movements and presumalgin unbiased
estimates for other parameters (Pollock 1982, Kiérdaal. 1997, Silva
et al. 2009). Temporary emigration from the sampled §83%6) and
return rates from neighboring regions (about 67%rewmoderate
during the monitoring period.

The incidence of temporary emigration combined with
significant probabilities of remaining away frometlarea and varying
site fidelity suggest that some individuals useeothreas beyond the
study area (see Fortuna 2006). Caravelas RiveraBs@nd vicinity
comprise one of the largest studied areas forstiegies (more than 700
km?), and at the same time the area presents a pauu$gic of habitats,
encompassing closed and open waters. This pasedifferent from
other localities where the species has been studgdlly small areas
where most sampling effort was restricted to pretdays (Flores
1999 Santost al. 2001, Azevedoet al. 2004 Cremer 200,/Wedekinet
al. 2007 Flach et al. 2008 Filla and Monteiro-Filho 2009). Guiana
dolphins have been sighted in all regions adjaterdur study areas
(Rossi-Santogt al. 2006), and habitats commonly used by the species
in the Abrolhos Bank include estuarine systems,nopeastal areas,
shallow reef banks, and offshore islands (Rosste3at al. 2006). It is
reasonable to suppose that individual stratificatib habitat use exists
(see Wilsoret al. 1997), given the small home ranges recorded #®r th
species (Flores and Bazzalo 20Béssi-Santost al. 2007, Wedekinet
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al. 2007) and the heterogeneity of habitats commordgduby the
dolphins in the Abrolhos Bank.

Population size

Population size fluctuated during the monitoringysgbly
because of interannual variation in the balance/dat additions (births
or immigration) and deletions (deaths or emigrationthe population.
For example, abundance reached its lowest leva0@®, but was much
higher in 2004 and 2009. Such fluctuations in almed, combined
with the ranging patterns and residence levelgjesigthe existence of a
super-population(sensuSchwarz and Arnason 1996) using the study
area (see Kendall 1999). The dolphins sighted atbétginning of the
monitoring period were not the same individualsnsee later years.
Some were resighted during the study, but manyrsthray have left
the area or the population.

Nevertheless, the Caravelas River Estuary holdslatively
small population of Guiana dolphins. As abundarateérates are only
available for a few other populations, then opputieis for comparison
are limited. Most of these estimates were obtathealugh strip or line
transects sampling (Bucklard al. 2001). Few studies conducted mark-
recapture analysis, and only through classicaledgsopulation models
(see Chao and Huggins 2005 for a review). Theseetagdight include
an unknown degree of bias (see Hammond 1990). ngutthis
possibility aside, it seems that most populatiorerewestimated to
consist of less than a hundred (Pizzorno 1%@ward and Schnell
2001) or a few hundred individuals (Geise 19%kiseet al. 1999
Acufia 2002 Cremer 2007). One large population of more than a
thousand dolphins was studied in southeastern IBfdachet al. 2008),
but this is probably an exception for the species.

Population trends

Trends in abundance offer a clear indication ofhbalth of a
population (Williamset al. 2002). Assessment of such temporal changes
is a priority recommendation for the species, fimoth local and global
perspectives (IBAMA 2001Reevest al. 2008). The previous estimates
of Guiana dolphin abundance provided only instagwais information.
This is the first study to provide a time-seriesablundance estimates
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and is the first attempt to model population trerids the Guiana
dolphin.

Despite annual fluctuations in abundance, the nummbedolphins
in the population of the Caravelas River Estuarg wpparently stable.
We could not reject the null hypothesis of constpapulation size
suggested by the regression coefficient of therdndformed annual
point estimates. Monitoring low rates of populatiodmange of highly
mobile species in dynamic environments is trulficliit because such
changes may be confounded with natural variabilityabundance
(Gerrodette 198 #orney 2000). Our current effort is not yet sensito
slight variations in population size. However, iént time to identify
such variations is feasible (estimated to be elgasns of monitoring).
This fact reinforces that long-term efforts are uieed to ensure
reliability of conclusions about changes in popolasize.

The power to detect upward or downward trends rgctly
related to the precision of abundance estimategetisas to the rate of
change in population size and to the monitoringation (Gerrodette
1987, Fairweather 1991Wilson et al. 1999 Taylor et al. 2007). Our
study represents a case of relatively precise ano®l estimates (see
Taylor et al. 2007) and the monitoring scheme we have appliegldvo
be able to detect abrupt abundance changes with dégainty. This
situation is much better than most other cetacpaniass. For example,
the power to detect a precipitous decline (50% 3Snygars) in this
Guiana Dolphin population (1 B-= 1.00) is much higher than for the
majority of studied stocks: over the same samppegod, power is
between 0.00 and 0.50 for more than 85% of largaeleshand more than
95% of delphinid stocks (see Fig. 1 in Tayébmal. 2007).

Even with an apparently stable population of Guidaphins in
the Caravelas River Estuary, the species is expsselveral long-term
human-related threats in the area and throughautdistribution.
Typically, many simultaneous threats affect popolet’ local
persistence (Wedekiret al. 2005 Filla et al. 2008). While the
cumulative effect of these impacts is not fullydsiit, a cautious and
conservative interpretation should be maintainedeeially because the
species is a habitat specialist and small populatare scattered along
the coast. Sustained monitoring effort is therefexguired for effective
management of this species and its habitats.
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Conclusions

This study represents a first step towards undeisig the
population dynamics of Guiana dolphins. Our ressifted light on the
importance of long-term monitoring of the speciesspecially
considering that anthropogenic pressures are esgbdct increase in
coastal habitats in the future. A robust baselime €onducting
population monitoring was based on open and clpsgdlation mark-
recapture models applied to photo identificationtadaReliable
parameter estimates from other Guiana dolphin @ojomis are urgently
needed to allow further comparisons and to yiela@eguate evaluation
of the conservation status of the species.
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Abstract

Resource predictability is among the key socioagiold factors
underpinning the complex matrix of trade-offs thiates the group
patterns of animals. The individual decision on Homg and with how
many conspecifics an interaction is advantageouk wiimately
determine the social organization, and shape tbetial network.
Based on the strength and heterogeneity of sootaractions, we
provide a conceptual framework for predicting namdan social
network topology. We tested the framework's exg&mta using a
combined spatial, temporal and demographic appragglied to a
long-term dolphin association study. OBetalia guianensipopulation
from eastern Brazil offers a tempting system tond@ra whether non-
social factors influence the social network topglag as much: 1) the
studied area encompasses a highly heterogeneoutathahith a
possible stratification of habitat use; 2) the gapan dynamics is
marked by deletion and addition of individuals, e¥hioffers an
opportunity to evaluate the temporal-dependencassbciations. We
found that association patterns are structured @tmodular social
network. We discarded the individuals’ space userlap as a major
force driving this topology, however a demographignover is
temporally splitting the interindividual associat® into modules.
Within the turnover temporal scale, the populatioliowed a fission-
fusion dynamics, as indicated by a majority ofdlaicquaintances and
few preferred associations. We highlighted that-sacial factors can
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highly affect non-human association networks, amlikl be accounted
for an apposite portrayal of societies with diffgrelegrees of fission-
fusion dynamics. Our results may inspinew hypothesis on how
intrinsic and extrinsic factors have shaped thecttire and dynamics of
delphinid social systems.

Keywords: modularity, social structure, population turngvgpace use
overlap, socioecology, group living, Guiana dolghBotalia guianensis
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Introduction

Social complexity emerges as individual efforts dreating
mutual solutions to a basic problem: being alivéhe Tchallenges
embedded can be roughly summarized as eating witheing eaten,
mating and rearing offspring. Departing from thelationary history of
the species, particular contexts in which individyserform these vital
functions optimally give rise for different sociatructures (e.g.
Eisenberg 1981). One solution to enhance individsiavival and
reproductive success is to live in groups, by sspgly reducing
susceptibility to predation and increasing accessdrtain resources
(e.g. Majolo et al. 2008). Benefits embrace enhdriceging, vigilance
and offspring rearing efficiency, while costs iradu increased
competition, aggression, parasitism and diseaseadpfsee Lee 1994,
Connor 2000). Ecological (e.g. Crook 1970) and gerfactors (e.g.
Hamilton 1964, Alexander 1974, but see Nowak et2&10), and
phylogenetic inertia (Wilson 1975) are referredhe adaptive origin of
group living and social behavior, not in a mutuatyclusive manner
(Slobodchikoff and Shields 1988).

Due to logistical difficulties in studying free-rging aquatic
animals, the social structure of mammals has betterbexplored in
terrestrial habitats. However, even with the obsidifferences imposed
by both environments, animals face the same presstelated to
sociability, and then may present similar socidutsons (Wells et al.
1987, Wrangham 1987). Long-term efforts have reckahe Order
Cetacea as a highly heterogeneous clade in reltdi@ocial systems
(see Connor et al. 1998, Mann et al. 2000), shesauial features with
independently evolved large brained mammals (pemag.g. Wirsig
1978, Wrangham 1980; and proboscideans, e.g. Weigaal. 1996),
and ecological constraints of other terrestrial mmeain orders
(artiodactiles, e.g. Jarman 1974; and carnivorgs,Racker et al. 2000).
The Sub-order Odontoceti shows a large range oélsogyanizations,
with interindividual relationships oscillating bezen unstable and quite
stable, in contrast with the mainly ephemeral d@stioan found in the
Sub-order Mysticeti (e.g. Clapham 1996, Connor 20@&uch social
plasticity can even be found intraspecifically, fioistance, between
resident and transient killer whale populationg.(@8igg et al. 1990,
Baird and Dill 1996), or bottlenose dolphins witiffetent levels of
relationship stability (e.g. Wells et al. 1987, @onet al. 1999).
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Through a socioecological perspective, the avaitabof
resources is the primary factor shaping delphirodiad structures.
Spatio-temporal predictability of resources, sushf@od, mates, and
safe habitats, may explain how the cost-benefitctions influence
ranging behavior, intensity of competition, and imad group size
(Gowans et al. 2008). When resources are patchyaamdals need to
move large distances to find them, an unpredictatdmario is likely to
occur. Therefore, grouping facilitates foraging awvercomes scramble
competition. Large home ranges are generally obsgeirv the open sea,
which is characterized by low habitat complexityemdnthe unique anti-
predator strategy is to form a group. However, whesources are
abundant and found locally, a more predictableasibn arises, thus
favoring small home ranges. Such condition is gaherfound in
coastal and estuarine areas, i.e. more structucaipplex habitats,
where finding a suitable refuge may be more adgmuas than
grouping. Then, one could dichotomize that largeugs could be
expected when resources are unpredictable whildlesnggoups are a
better social strategy at a predictable situatg®e (Gowans et al. 2008
framework).

The group size may ultimately affect the number datation
of the pairwise relationships (Table 1). Aggregasi@and large groups
are generally comprised by many brief dyadic asdesi (e.g.
Bel'kovitch 1991; Norris et al. 1994; Brager et 8994), or temporarily
unite more stable units (e.g. Ostman 1994; Ba@@02 On the other
hand, within smaller groups, there are fewer memlerinteract but
they may have more opportunity of being engagezldser associations
(e.g. Scott et al. 1990; Whitehead et al. 1991;0omet al. 2000, Baird
et al. 2009, McSweeney et al. 2009; Hartman €2@08). Even though,
this is not a trend without exceptions (e.g. Lussed al. 2003;
Karczmarski et al. 2005; McSweeney et al. 2007 n@agi et al. 2011).
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Table 1. Theoretical dichotomic relationship between reseupcedictability
and habitat and group features (from Gowans-WiKsigzzmarski 2008)
affecting interindividual interactions of delphisidComplexity of habitat may
influence ranging behavior and then group sizesaalility. At last, the number
and duration of delphinid relationships may be @#d, which here is polarized
in several brief associations and a smaller nurobkasting associations.

Resource availability

Unpredictable Predictable

Complexit high I
Habitat prexty 9 gw
Range low high
Gro Size large small
P Stability low high
) Number many few

Interactions .

Duration short long

Network theory derived from Euler's graph (Albernhda
Barabasi 2002, Newman 2003) is one of the promisouikits for
description, analysis, and understanding of complax self-organized
systems (Amaral and Ottino 2004). Network thinkirecently has
drawn the public attention due to shared global kwél properties
among very distinct phenomena (e.g. Newman 200%atdi et al.
2006, Bascompte 2009). Advances in the field of taetal statistics
(Albert and Barabasi 2002) have driven an extenseagch for patterns
in biological networks, from fields such as comnturfsee Bascompte
2009) and population ecology (e.g. Aradjo et all®0 The study of
animal behavior has greatly benefited from this lengentation
(reviewed by Krause et al. 2007; Croft et al. 200&y et al. 2008). By
formalizing the link between individual behavior darpopulation
processes, social patterns could be not only destribut have their
deviations from randomness accurately quantifietie Tknowledge
about animal society organization has its rootshennature of dyadic
associations (Hinde 1976, Whitehead and Dufault9L9%owever,
since social relationships rarely occur in isolatioa broader
understanding of sociability requires perusing thework of such
dyadic interactions. The social network potenialdxtracting details of
the social structure is particularly functional fleighly dynamic and



84

heterogeneous interindividual interactions (e.gsdaau 2003, Croft et
al. 2004).

Therefore, the topology of social networks encoagsortant
information on differences in social organizatioffhen, structural
patterns of networks should help us to better wstded the structure of
an animal society (e.g. Croft et al. 2008). Frora tiroup size and
stability dichotomization (Table 1) one may predagtological structure
of the social networks, based on the strengthtefactions (duration of
relationships) and number of interactions (densitgelationships) (Fig.
1). Aggregations may be engaged in numerous epla¢@mesociations,
which could lead to a random social network. Irs ttéise no particular
network structure may arise, since virtually allmiers of population
can interact, at different levels, but mainly imdtduration associations.
On the other extreme, long-lasting and permanesucétions can lead
to a disconnected network (components), in whiclallsparts of the
population frequently interact only with each othd@hese intense
relationships usually characterize the highly staéhd hierarchically
organized matrilineal social units (sperm whaleg, #/hitehead et al.
1991, Lusseau et al. 2008; pilot whales, e.g. Arioal. 1993; killer
whales, e.g. Parsons et al. 2009). Between thenplaced the fluid
groups of intermediate sizes and composition, otwirat different
levels in time and space, displaying different eéegrof fission-fusion
dynamics (cf Aureli et al. 2008). This heterogeneous pattery fead
to a modular network topology, comprised of weadhtgrlinked groups
of individuals which internally are strongly coniest.
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Figure 1. Hypothetical social networks depicting dyadic agstian patterns

among delphinids based on density and strengtmtefactions. Stability of

associations (ephemeral, fluid and stable) relédeldroad categories of social
organization (aggregations, fission-fusion, and n@erent pods) may
theoretically shape the topology of delphinid sbeiatworks, here roughly
represented by the extremes random, modular aedrdiscted components. In
the network depiction, weighted edges connectirdeaaepresent the intensity
of association between individuals.

Given that mammalian societies are complex systésege
Crook et al. 1976), grounded by distinct internadl @&xternal factors,
one may be aware of varying patterns within thisipdistic view.
Several other mechanisms may contribute to generatdules (e.g.
Lusseau and Newman 2004, Lusseau et al. 2008, #lezki et al.
2009, Daura-Jorge 2011), thus varying levels of wemity may be
expected (not included in the Fig. 1). An importaatirce of variation
relies on the spatiotemporal opportunities forwidiials to interact with
each other (Aureli et al. 2008). Non-social effecssich as those
regarding space use patterns and temporal demagraphnges, are
known as important sources of variation in assmsiat among
individuals, limiting or favoring potential assota. Exit and entrance
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of individuals in the population, by death-emigpati and birth-
immigration, affect the likelihood of associatiotorag the time (e.g.
Lehmann and Boesch 2004), as well as differencd®ime range or
habitat preferences influence the association fibityain a spatial
scale (Clutton-Brock 1989).

Here, we tested this theoretical framework condgct long-
term experiment to assess the poorly known soaighrozation of
Sotalia guianensjsa delphinid endemic of the western Atlantic Ocean
Our main objective was to investigate the structoferelationships
among dolphins and test the general hypothesighbatsocial network
shows a modular structure. We suggest such hypsthesed in the
proposed fluid social relationships for the spedf®antos and Rosso
2008). Knowing that spatiotemporal factors can uefice the
opportunities for group members to interact (Kappalnd van Schaik
2002, Aureli et al. 2008), we further aimed to teshdidate non-social
mechanisms that could allow a modular structurenberge. Due to the
high complexity of habitat encompassed by our stadsa, we first
investigate if individual differences in space useuld lead to
preferential associations. Second, we sought ftangporal pattern in
dyadic association, based on the dynamics predifdedan open
population. Finally, we evaluated a set of netwmtrics to examine if
one of these mechanisms has driven the networlktstes observed.
Thereby, this effort provides further insights intoon-social
determinants of non-human sociality patterns.



Material and Methods

Study area

The study covered the Caravelas River Estuary (1%°3
39°30'W) and its coastal adjacent areas, in theolAbs Bank, an
extension of the continental shelf off eastern Biear coast (Fig. 2).
The area encompasses a highly heterogeneous hah#aacterized by
a mosaic of open waters protected by coral reefidsay mangrove
forests with channels, sandy beaches and bankbatlbw and warm

waters.

~18°0’0”’S

[ Coral reefs
...... 10m isobath
« Dolphin groups

39°o:o”W &

Figure 2. Caravelas River Estuary in the coast of AbrolhoslBaeastern
Brazil, and the Guiana dolphiSd@talia guianens)sgroups in which individuals

were identified (black dots).
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Sampling protocol

Data collection was carried out from April 2002March 2010,
during boat surveys under routes planned to coker study area
homogeneously (see Cantor etialpress. Visual search for groups of
dolphins was done by at least three observers riogv&80 degrees of
the visual field. For all group sightings, we retmd geographic
coordinates (GPS) and group size and attemptedhtdograph the
dorsal fin of all dolphins in the group, takingraany photos as possible
of both sides and without individual preferences (frther details see
Rossi-Santos et al. 2007).

Distinguishable individuals provide the basis fesdriptions of
social systems (Hinde 1976). Guiana dolphins waeetified by natural
markings on dorsal fin, a technique largely used idividual
recognition of many cetacean species (Hammond. €t980). During
2002 and 2004, photographs were taken from SLR k@@(eee Rossi-
Santos et al. 2007), then digitalized and incluidetthe digital catalogue
with photos from 2005 to 2010. The catalogue wasiogially
reviewed and only high quality photographs wereluided for
identification, i.e., those with good focus andexpgendicular angle of
the dolphin in relation to the photographer.

Data filtering

To avoid misidentifications, calves and individuaisthout
distinctive marks (i.e. at least one notch on tlading edge) or those
captured only in low quality photographs were notluded in the
analysis (see Hammond et al. 1990). Since there sasificant
individual movements across our study area (Caatoal. in pres$
infrequently resighted individuals were relativelgmmon. In order to
reduce spurious association and also to increassésmn of association
indices and increase power of social analysis (8tileiad 2008a), we
applied an observation threshold, keeping onlyviiddials resighted at
least three times (see also Croft et28l08). We also discarded groups
in which only one individual was identified, butgtegroups which only
part of the individuals were identified. Howevdre taverage group size
in the area was smally(= 4.7 + 0.61 SD) and the proportion of
identified individuals per group was relatively hifpr all studied years
(see Cantor et ah press.
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Dyadic associations

To examine social relationships between Guianaldadp we
considered all dolphins identified in the same gron the same day as
being associatedSambit of grouphypothesis, Whitehead and Dufault
1999). To determine how often individuals groupedether, we
calculated association indices for all pairs. Thieskices estimate the
proportion of time a pair of individuals was obshin the same group,
in relation to the amount of time they were obsérivedifferent groups
(Cairns and Schwéger 1987, Ginsberg and Young 199&lf-weight
association index (HWI) is appropriate to this pgafian because it
compensates for bias when not all individuals irgraup can be
identified (see Whitehead 2008b). The index is riefi as:HWI =
x/(x + yab + (ya + yb) / 2) where, x is the number of sampling
periods with the dolphina andb were observed in the same grougp,;
is the number of sampling periods wilandb identified but not in the
same groupy, is the number of sampling periods with only doipai
identified, andy, with only dolphinb.

The precision of the HWI, indicated by standardesr was
estimated through non-parametric bootstrap methtd 00 replicates
(Whitehead 2008a). The variability of HWI (Sociatferentiation —9),
which technically is the coefficient of variatiori the real HWI, was
evaluated by the maximum likelihood methefl (Whitehead 2008a). It
represents a heterogeneity measure of the relhipis the dolphin’s
society: Svalues lower than 0.3 suggest a rather homogensatisty
in relation to the association index&syalues greater than 0.5 suggest a
well differentiated society; an&-values higher than 2.0 characterize
extremely differentiated societies. To estimate #Hesuracy of the
association matrix, we calculated the correlatioefitcient between the
true and the estimated association matrices, base& estimated
through the maximum likelihood methocf.(Whitehead 2008a). This is
a measure of how well the association matrix régedche real social
structure. A correlation about 0.4 indicates a s@ha representative
pattern, while values around 0.8 point out goodesgntations.

Network topology
Interactions between individuals of Guiana dolphivsre

described as indirect weighted networks (e.g. Balcat al. 2006). This
social network is defined as an incidence matkixdescribing the
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proportion of time that pairs of individuals werssaciated. Then, an
elementg; of the matrixA is the value of HWI for the individuajsand

i. In the network representation, nodes represgntidividuals were
connected by edges, whose thickness was propdrtiortae weight of
association (HWI), whenever HWI was different of@eThe network
was illustrated using Netdraw 2.091 software (Btirg902,NetDraw:
Graph visualization softwardjlarvard, Analytic Technologies), based
on the spring-embedded layout, which arranges sianiar individuals
together.

Non-human social networks usually have their weigtiges
filtered (e.g. Lusseau 2003, Lusseau and Newma#d,20(sseau et al.
2006, Croft et al. 2008), in an attempt to remgveri®us associations,
which supposedly biases conclusions (James e0@8)2However, this
arbitrary procedure could also remove importardrimiation encoded in
the weak edges (e.g. Granovetter 1974). Thus, wkiaed unfiltered
weighted networks (as suggested by, e.g. Lussealu 2008, Opsahl et
al. 2010), and challenged their features with mdbels (see below).

In order to describe the social network structwe,measured
the following topological properties: (1) Densitf2) Weighted
Clustering Coefficient, and (3) Modularity. (1) Dy informs how
connected the network is. It measures the proportd observed
interactions in relation to the possible interacsi@mong all individuals
(see Ydozis 1980). The equivalent for weighted oet® was calculated
by dividing the sum of all edge values (HWI) by thember of
individuals. (2) Global clustering coefficient quéies the degree to
which nodes tend to cluster together. It is a dociatwork's
connectivity measure, representing the chance ef itidividual's
associates being associated among themselves. ig¢a&bhn the
clustering coefficient is based on density of #&ip] i.e. three nodes
connected by either by two (open triplet) or theeges (closed triplet).
Clustering coefficient is, then, defined by the femof closed triplets
divided by the total triplets (e.g. Newman 2003). fake weights into
account, we assigned the averaged weight for tlhyesedf a triplet
(arithmetic mean methpdBarrat et al. 2004, Opsahl and Panzarasa
2009), with TNET package (Opsahl 2009) in the Riremment (R
2010).

Finally, (3) Modularity quantifies the tendencytbe nodes to
cluster into cohesive sub graphs. A modular somalork is composed
by weakly interlinked groups of individuals whicmternally are
strongly connected to each other. It complemerdgsgibbal clustering
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coefficient identifying the amount of modules antiietr individuals

belong to each one. Modularity was calculated ublatcarto (Guimera
et al. 2004), that uses a stochastic optimizagchriique, the simulated
annealing algorithm (Kirkpatric et al. 1983), tadithe partition of the
social network in modules that yields the highéffeence between the
actual density of connections among individualgd@she modules and
the density of connections expected by chance (&wéinand Amaral
2005a, 2005b). In order to explore how consisteatmodularity was
when taking weighted edges into account, we siredl@n increasing
cutoff scenario to define a binary interaction. W¥sted the modularity
significance, and compared the number and sinyldsgétween new
modules and the unfiltered modules. Significances waecked by
generating 1000 random networks (see below) andbaced with the

empirical value for each HWI cutoff (that rangednfr 0.1 to 1.0). To
quantify how similar the new filtered modules wadre relation to

unfiltered ones, we applied the Sorensen indexchvtakes the double-
presence of an individual into modules as referesiceesemblance
between two modules (Legendre and Legendre 1998).

Spatial patterns of dyadic associations

Mammalian social interactions are generally inflcesh by
space use (Clutton-Brock 1989), because individiffdrences in home
range or habitat preferences may affect the préibalof individuals
group together. Then, one would expect the streafjtielationships to
increase with the spatial overlap, i.e. that daiptthat use more similar
areas tend to show higher probability of beinghim $ame group. To test
this hypothesis, we analyzed the relation betweaewlid association and
the averaged distance between pairs, with a Maaeklation (1000
permutations) between association and distanceicestrTo estimate
how far in the space each dyad was, we calculétedniean Euclidean
distance among all their geographic coordinatesekoh individual, we
used the first geographic coordinate of the grompwhich it was
sighted. To ensure independence of samples we zaohlgnly the
geographic position where individuals were sepdraia different
groups and days, because individuals in the samgpgrere obviously
using the same area.

To test if spatial patterns affected the networkotogy, we
analyzed its relation with the emergence of moduMsen lower intra
and a higher inter-module distance of individualgxpected. Distances
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within and between modules were calculated by aiegathe mean
Euclidean distances between all pairs of individuhlat composed a
given module. The averaged distances were challength a null

distribution generated by a null model (see beldw)assess their
significance. All analyses were programmed in therRironment (R
2010).

Temporal patterns of dyadic associations

Temporal stability of dyadic associations was eatdd through
the Lagged Association Rates analysis (LAR, Whiaeh£995, 2008b).
The population LAR (g) corresponds to the averagebability of
previously associated pairs being found togethamaagfter a given time
lag d. For different time lags, the observed number epeated
associations was divided over the potential numbérrepeated
associations and summed across all individuals.almgroup with
permanent companionshipsdy{vould be 1, while for groups in which
members changes at high rates, this probabilityldvall exponentially
with time lag to lower values (see Whitehead 199K). determine
occurrence of nonrandom associations, LAR were emetpto the null
association rates (NAR), in which all individualsutd be randomly
associated (Whitehead 1995). NAR were calculatenkidering the
number of associates and the number of observationseach
individual, but assigning the identity of its asstes randomly.

To describe how relationships change over timel) g{ere
plotted against time lags. Seven candidate exp@hestcay models
were fitted in order to quantify structural paraemst of the social
organization (Whitehead 1995). They are based erctimbination of
three potential components of societies with fisdission dynamics:
constant companionships (CC), i.e. individuals theg permanently
associated; casual acquaintances (CA), represeimiligiduals that
associated further than a time lafy but disassociate ; and rapid
disassociation (RD), pairs that disassociate duantyme lagd. The
most parsimonious model was selected based on ulsi-4kaike
Information Criterion (QAICc) (Burnham and Andersdf02), due to
the overdispersion adjustment and small sample(¥itetehead 2007).
For a best display, LAR and NAR for lag incremeafsl day were
averaged using a moving average window of 1000 deysitehead
1995, 2009). Standard errors for the LAR and NARnedges were
calculated by Jackknife procedure, sequentiallyttimgi data from 30-
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day periods, to overcome potential dependence arsamgling periods
(Whitehead 1995, 2009). These analyses were pegtorifior all
individuals, without the observation thresholdsiiltto avoid a positive
bias of the LAR ¢f. Whitehead 2008b). These analyses were calculated
with the suite of Matlab (MATLAB7.1, release 14) ograms
SOCPROG2.4 (Whitehead, 2009).

Demographic effects

Other non-social effects on structure of interimndinal
associations were assessed by insights on populadinamics.
Evaluating demographic effects helps to place paitef association in
perspective because, if one individual has left population then it
cannot associate with those that remained. Moveroénhdividuals
through the study area (i.e. immigration and enignd was modeled
by lagged identification rated IR, Whitehead 2001), which is the
probability of identifying an individual in the sty area at any time
given its previous identification, comparing to andomly chosen
individual after a time lag. If the population i®sed the LIR should be
constant. If individuals are leaving the populatighrough emigration
or mortality), a fall in the LIR is typically dett with a time lag. LIR
that fall and then rise with time lag can be resiiityclical movements
of individuals through the study area.

Exponential decay models were fitted to the obgkriiR,
based on a combination of several demographic peeas) such as the
population size (N), mean residence time (a), m@#ae outside the
study area (b), emigratiory)(and mortality ratesdj (see Whitehead
2001). The quasi-Akaike Information Criterion (odispersion
corrected) informed the most parsimonious model rfBam and
Anderson 2002, Whitehead 2007). LIR confidence riatls were
obtained by bootstrapping individuals with replaesin to obtain
replicates ¢f. Whitehead 2007). LIR analyses were calculated tiéh
suite of Matlab (MATLAB 7.1, release 14) program®@&ROG 2.4
(Whitehead 2009).

A relation between association probabilities andeale of
individuals in the study area (mortality, emigrajiovas sought by a
linear regression of LAR and LIR for the same titags (under a
geometric progression). Based on the LAR and LIB B&#ing models,
we define the time lag in which the association mightification rates
present lower probabilities (half) of continue éxig. In order to relate
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the decayment of association probabilities withspree of individuals
in the study area, we analysed the temporal sdatbeoturnover of
individuals among different blocks of time. Thealostudy length (96
months) was arbitrarily divided by numbers thatyamlsulted in integer
periods of months (6, 8, 12, 16, 32, 48 months). lantity how
different the blocks of time were in relation toettpresence of
individuals, we built a dissimilarity matrix of th@locks in relation to
turnover of individuals with Whitakker’s beta digéy index (Whittaker
1972). The averaged dissimilarity among the blafka given time cut-
off was compared with the expected mean dissinylagyenerated by a
null model (see below).

Local network properties

To test if the observed network structure corredpoto the
independent temporal classification of individuaig, calculated the (1)
Average Weighted Shortest Path Length and the ti@eatrality
Measures to each node of the network. To ensutebtith the edge
weights and the number of intermediary nodes (dmenf Freeman’s
1978 original metrics) affect the identificationdalength of paths and
centrality metrics, we used the tuning parameteppsed by Opsahl et
al. (2010). Values otx€[0,1] prioritize the number of intermediary
nodes at the expense of the interactions’ strefigths, a shorter path
made of weak edges is favored over a longer patiposed of stronger
edges. By contrast, when> 1 additional intermediary nodes are less
important than the strength, thus paths with ledgsrinediaries and
stronger interactions are favored. Finally, when= 0, metrics are
binary, and witho. = 1 metrics are weighted.

(1) Shortest path length is the minimum distancavéen two
individuals. We expected that individuals sighteithim the same block
of time present the shortest paths between themne, & exponentiated
the edges weights t@ =2 to focus on the stronger relationships. In a
weigthed network, a path length is described byldhest sum of edge
weights between a pair of nodes, however in cdsgsetiges represent
“costs” (Dijkstra 1959). In social networks, the igi indicates the
strength of the interaction, thus the small pattyik is better described
by the lowest sum of the inverse of edge’'s weidgbtaides 2001,
Newman 2001). Then we used the inverse of associatdex (1/HWI)
as a measure of distance between two individuatsp@ption of time
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they were disassociated), in order to identify‘least costly” path (i.e.
the path with stronger edges).

To select the most influential measure of cenjralve applied
a Principal Component Analysis to (2) Weighted E€fesss, (3)
Weighted Betweenness, and (4) Strength, undertfming parameter
values ¢=0, 0=0.5, a=1, a=2). These are defined as follows: (2)
Closeness centrality is the inverse of the sunllafhartest path length
of a given node to every other node in the netwéreeman 1978). It
represents the total distance of a given individtalthe rest of
individuals in the society. Central individuals afeloser” than
peripheral individuals, which can reflect the iridival influence on the
flow through the network. (3) Betweenness cenjraiiteasures the
number of shortest paths that passes through 4 focke (Freeman
1978). It assesses the degree to which a node asnmEnsely
connected groups, and is able to funnel the flovthim network. (4)
Strength is the weighted counterpart of the degmsgrality of binary
networks, i.e. the number of edges that a nodéHragman 1978). It is
usually quantified by summing the weights of aljesl of a given node
(Barrat et al. 2004). In a social context, both rdegand strength
represent the involvement of an individual in thetwork, explicitly
through the number of individuals interacting wilte focal node and
the strength of its relationships. Then, both wem@bined by the tuning
parameter, when €[0,1] favored the largest number of edges over the
overall weight, whereas>1 favored stronger edges over higher degrees
(Opsahl et al. 2010).

Association patterns

We tested the hypothesis that Guiana dolphins harsndom
social structure, with no prefered or avoided aisgions of individuals.
Animal association patterns are usually evaluatgdMpbnte Carlo
simulations (Bejder et al. 1998), in a similar fashof methods used to
address other ecological issues (Manly 1995). Wdely applied pair-
wise swapping algorithm was recently criticisedyirgy on an extensive
debate in the ecology literature about methods esfegating random
binary matrices (Krause et al. 2009). Warned by, thie were inspired
to utilize a different approach for testing the casation indices
significance. In order to avoid the supposed bialsese we relied on a
null model (see first null model below) that randpenthe raw group-
individual matrix differently than the well-knownepmutation flips
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(Bejder et al. 1998, Mikl6s and Podani 2004, Ma20p7). However,
our randomization was done under the same constraon that
algorithm: the number of animals in each group &mel number of
groups in which each animal was identifiedl Bejder et al1998). We
also performed the recommended 20,000 randomizattonensure
independence of permuted matrices (Manly 1995, &8eagtlal. 1998).

In a long term study, significant associations dootcur as a
bias from additions (births or immigration) and et@ns (deaths or
emigration) of individuals in the population, besatsome individuals
shared time together in the study area and othensod. To rule out this
non-social demographic effect from associationdesj we first defined
the maximum scale over which associations couldriadysed, based on
Lagged Association Rates and individual turnovealyses discussed
earlier, separating the individuals sighted (astiemce) in these period
of time (32-months, see results). Then, each dfetlperiods was split
into sampling periods during which demographic efevere less likely
to occur €f. Whitehead 1999). Too short sampling periods deerdae
power of the test, whereas long periods enhancpriitbility of type-
1 error due to individual movements through thedgtarea ¢f.
Whitehead 1999). We determined one-year periodsastable length of
sampling period, during which this population coddd considered
closed (Cantor et aln pres3. At each iteration, one sampling period
was chosen and the randomization procedure (séemodels below)
was carried out within it.

In order to further test the relation between emecg of
modules in the social network of Guiana dolphing déime temporal
effect we compare the average association indie&$l) within and
between both classes (modules; sighting period82efonths - see
results). We expected individuals sighted in thmes&2-month period
to show association indices significant higher thiadividuals from
different periods. The same pattern was expectad irfdividuals
composing the modules of the network. The comparisetween and
within classes was carried out through the Mangést ton the null
hypothesis that association between and withinselsvere similar
(Schnell et al1985).

Long-term preferred companionships (that persistossc
sampling periods) are indicated by a significaritigh Coefficient of
Variation of the real association indices. Shomnte preferred
companionships (within the sampling period) areicagtd by a
significantly low mean of the real association ¢&li and an
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unexpectedly low proportion of non-zero of assdoiatindices
(Whitehead 1999, 2005, 2008b). This procedure ceptae summary
statisticsS used in Manly (1995) and Bejder et al. (1998). pPhealue
was calculated as the proportion of random valheswas higher than
real data, thus a significant difference, as an-taited test, was
indicated large p-values (p > 0.95j.(Whitehead 1999, 2005, 2008b).

The test was extended for each dyad to test ifnteenbers
associate preferentially, against the null hypdthekat there is no
particularly strong or weak association (two-taitedt,cf. Bejder et al.
1998). This was done by considering a conservatw®ff on the
random dyadic association distributions, to inceetiee probability of
detecting real preferences (individuals seen tagetbften) and
avoidances (never seen together). Pairwise associestimates at or
below the 2.5% percentile were considered as amo&aand those at or
above the 97.5% percentile were considered asrprefe. Within the
percentiles, we defined the casual associatiohd=(ére et al. 2010a,
2010b). The number of expected significant dyadsewealculate as the
5% of all possible pairef. Whitehead 2008ers. comn). All analyses
were programmed in the R environment (R 2010).

Null models

The observed levels of network structure and ptasmay
emerge due to several mechanisms, even in rand@phgr(see
Newman 2003, Bocatelli et al. 2006, James et @9R0To test if the
observed patterns occurred at random, we compargitieal results
with 1000 similar sized random networks. These bpdta/ were
generated by null models that randomize the origimatrix. To make
them comparable, the degree distribution, numbemoafes and edges
were the original features constrained during #relomization process.
To reject the null hypothesis, the observed reshduld not be a typical
value from the random distribution taken as a berak, being out of
the 95% confidence intervals (two-tailed test). Tmdl models were
designed. The first checked the significance ofvodt metrics (global
average path length, clustering coefficient, modiylpand association
indices. Departing from the raw Group x Individwadtrix, individuals
were resorted among groups. Every dolphin was @sdign interaction
by randomly selecting another individual from theop of possible
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partners. The probability of each cell being ocedpis the average of
the probabilities of occupancy of its row and caturiihis means that
drawing an interaction is proportional to groupesiz(marginal row
totals) and individuals’ capture frequency (colurghis procedure is
structurally similar to null models used elsewhéBascompte et al.
2003, Vazquez et al. 2009). The second null modekates random
values (mean Euclidian distances, turnover of iddizls, and

proportion of individuals) and local network profes to compare
classes (modules, blocks of time, and sightingope)i For turnover
analysis, the individuals were randomized into tllecks of time,

retaining constant the number of times each indaidvas observed.
For the rest, the classes were randomly assignethdoindividuals. A

mean random value within and between the classes eaculated to
build the null distributions. All null models andnalyses were
programmed in the R environment (R 2010).

Results

From April 2002 to March 2010, sampling was perfedion
401 days and covered more than 13,660 nmi, tot&B®) groups and
1,779 sighted dolphins. Within all the groups, ?4.8f individuals were
identified and only 12% of groups had less thaf diatheir individuals
identified. From the 143 catalogued individuals, B&distinctive
animals or captured in low quality photographs westincluded in the
analysis. By keeping only individuals recapturetkast three times, we
focused our analyses on 49 individuals distributed58 groups. The
Guiana dolphin population was organized as a wéferdntiated
society (S = 0.87 = 0.03 SE; maximum likelihood @pgmation), and
the estimated association matrix was a moderateegeptation of the
true pattern (r = 0.51 + 0.03 SE).

Social network topology

The social network of Guiana dolphins was compaged= 49
nodes, connected by 438 weighted edges (mean HW167 + 0.114
SD, range = 0.029 - 0.998). The number of realintatactions (density
p = 0.375) and the weighted densify, (= 0.0622) indicated a low
connected network (mean degilee 18.0 £ 8.7) with relatively weak
interactions (mean strength= 2.985 + 1.255). The global clustering
coefficient was higher than null expectancg, {&= 0.665, 95%CI =
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0.586 — 0.659), suggesting a high tendency of ntwlegister together.
The social network was more modular than its randmunter-parts
(Mgps = 0.209, Mandom= 0.119, 95%CI = 0.110 — 0.129). The network
was divided into three modules, containing 21, 6 a2 individuals,
respectively. The modularity was relatively coresigt under an
increasing cutoff scenario for defining an intei@ct The majority of
association index cutoffs yielded higher modulatitgan expected by
chance. Modularity remained consistent until a ffutbat was the
double of the mean population association (cutd3; Fig. 3A), when
there were low qualitative changes between the medules and the
unfiltered network modules (similarity remained HigFig. 3C).
Moreover, only after such cutoff the network breake disconnected
components (Fig. 3B).
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index) between new filtered and the unfiltered mesduhigher similarity was
found until the 0.3 cutoff.

Spatial patterns and network topology

The spatial use of the study area has not influknite
probability of individuals to form groups. Individls that use more
similar areas did not tend to show higher assauiaitndices (Fig. 4).
Dyadic half-weight association index was not cated with the mean
euclidian distance among all sightings of pairsirafividuals (r = -
0.0722, p = 0.923).
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Figure 4. Correlation between association index and the mEaalidian
distance among all sightings of pairs of individuaf Guiana dolphins in
eastern Brazil.

Moreover, the mean Euclidian distances betweens pafr
individuals within and between the three modulesewsot different
from expected by chance (Fig. 5). As a result, éheergence of the
modular network structure could not be explainednojviduals’ spatial
use overlap.
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Temporal patterns and network topology

The Lagged Association Rates (LAR) fell throughtingt study,
indicating time-dependence of association prold#@sli and a
significantly dissociation over the study. The LARbdel with more
support based on the QAICc consisted of rapid diafons and casual
acquaitances (Table 2), i.e. most associations @feskort duration.
Associations within the population were nonrandosince the
association rate remained higher than the nullca$on model over
the entire study period (Fig. 6a).

Time has also influenced the Lagged IdentificaiRates. Three
exponential decay models for LIR were supported thy QAICc
considering the set of candidate modeiQAICc < 2; Table 3). The
first two provided exactly the same fit and compdigparameters that
indicate the occurrence of emigration and mortalitgese models are
mathematically equivalent to the best fit LAR mof&h. 6b). The third
model suggested the occurrence of reimmigratiowhich temporary
emigrants return to the population.

Lagged association and identification rates weghlkiipositive
correlated (observed values’ 0.924, t = 9.85, p < 0.0001; predicted
by the best fitting models:R= 0.999, t = 237.01, p < 0.0001) (Fig. 7).
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This strong correlation between the average préibabiof association
and individual re-identification made a combinetipretation feasible.
Thus, from the best fit LAR model, it can be estiedathat after about
975 days the likelihood of associations declined ralf. At
approximately the same time (about 964 days), &t fitting model
yielded the same decrease in the Lagged Idenidic&ates (LIR). This
time lag was exactly the same period in which tiddviduals turnover
was higher than the null expectation (975 days ~n®8thths). The
population showed significant differences in themposition of
individuals only when the entire study was splitiedhree periods (Fig.
8), consequently 32 months was the temporal sdatbeopopulation
turnover.
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Table 2 Candidate exponential decay models ranked bydo@@lCc for Lagged Association Rates (LAR) of &ua dolphins
from Caravelas Estuary between 2002 and 2010. 3$mcation rate between individuals (g) is givem &snction of the time lag
(d) and is related to the following parameters:pprtion of constant companionB.f), casual acquaintancB.f) that last for a
particular length of timet(,d and a proportion of casual associati®g.4) that last for a longer period,() (see Whitehead

1995).
LAR Models Explanation QAICc AQAICc
_d Rapid Dissociation + Casual
g(d) = Pogg - € Vrcas Acquaitances 11482.1 0
d iy Rapid Dissociation + 2 levels of
g(d) = Prgs- e freas + P perm € | Tperm Casual Acquaitances 11484.61 251
- o~ rcas -
9(d) = Feas € d /+ (1= Feas) 2 levels of Casual Acquaitances 11530.3 48.2
e Tperm
Rapid Dissociation + Constant
g(d) =P, + Py e_d/Tcas Companionship + Casual 11657.53 175.43
Acquaitances
_d Constant Companionship + Casual
g(d) = Poc+ (1 — Prgs) - €~ /Tcas Acquaitances 11724.92 242.82
_ Rapid Dissociation + Constant
g(d) =P, Companionship 11733.32 251.22
g(d) = e_d/Tcas Casual Acquaitances 18919.66 7437.56
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Table 3. Candidate exponential decay models ranked bydo@@lCc for Lagged Identification Rates (LIR) ofi@na dolphins
from Caravelas Estuary between 2002 and 2010.ifabertion rates of individuals (R) as given as ftion of the time lag (d) and

is related to the following parameters (see Whiaeh2001): Population size (N), Mean residence timtbae study area (a), Mean
time out of the study area (b), Emigration rafe ortality rate §); others (g &) can be reparameterized as the proportion of the
population in the study area at any timg/(a+as)).

LIR Models Explanation QAICc AQAICc
R(d)=N"1-¢g x4 Emigration/Mortality 40430.69 0
R(d)=N"1eY Emigration/Mortality 40430.69 0
-1, -1 -1y . o (=(b"*+a"1)d) ; ;
Ry =N (@DH @D e ) Emigration *+ 4043269 200
(b-1+ab) Reimmigration
_(8d -
(e ( /N)) (™) + (a71) - eCOTHATHD) Emigration/Mortality +
R(d) = Reimmigration 40434.33 3.65
(b~1+a™1)
R(d) = b+ N 4 5. o-ad) Emigration/Mortality + /1, =g 3.90
- Reimmigration ' '
— olxd) i i
R(d) =a, +as-e"™ X Emigration+ 40838.41 407.72

Reimmigration
R(d) = 1/N Closed population 40846.70 416.01
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The 32 months turnover periods reflected into thedutar
structure of the social network. The partition ihree modules
corresponds to a division formed by dolphins obsgat one or more of
the 32-month periods of the study (Fig. 9). Fromvmm, individuals are
treated according to three sighting period clasesbeginning of the
experiment (individuals sighted exclusive froth32-month period plus
the individuals sighted both in the®land 2° periods); the end
(individuals exclusively from the' period plus individuals recorded
both in 2% and 3 periods); or during all the experiment (Individsial
sighted in all three 32-month periods).
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Therefore modules were defined by different indinatd that
composed the population during the study lengthe Pploportion of
dolphins sighted in the beginning of the experimeate significantly
concentrated into the module 3. Individuals sighitetthe end was found
mainly in the module 1. Individuals sighted in pels of transition (1
and 2% 2" and & periods) followed the same patterns. A single
individual sighted exclusively during the secondiqu:were find in the
module 2. Dolphins recorded in the entire experimeare equally
distributed across the modules (Fig. 10).
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Figure 9. Social network of Guiana dolphins off eastern Brpim 2002 to 2010 displaying three modules (Lieir 2-triangle,
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(weighted edges). White nodes indicate dolphinktsitjin the beginning (exclusive fror period and in the®land 2° period
of 32 months), while black nodes represents indiais sighted in the end of the experiment (onlthim 3 period and in the"?
and ¥ periods). Grey nodes, equally distributed amongutes, indicate individuals recorded in all thregipds. The ligth-grey
node (C19) represents the single individual sigletedusively during the second period.
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Social network properties

The average shortest path length, favoring stroadges in the
whole network, was low and significarkt,(,-, = 1.735, 95%CIl = 1.078
— 1.543). On average, less edges separated twaninmlpandomly
selected within a class than between classes. Térmage shortest path
length within individuals sighted during the fiemtd during the last 32-
month period was lower than expected by chanceressethe average
shortest path length between them was higher ththexpectation (Fig.
11). It suggests a higher cohesion within individdeom the beginning
and from the end of the study, which was refledte#gd the module
division. Since equally distributed across the elmdules, individuals
sighted during all the study did not present patights different from
the null expectation, within and between otherquési (Fig. 11).



111

o 23 -
)
0 —
B 2.1 - ] %
=
g 1.9 - J
BN
o
G 151 1 1
GJ -— -
o0
O 13- |
(V)
o o
% L} L} L} L} L] L}
1st All 3rd 1st x All Allx 3rd 1stx 3rd
Within periods Between periods

Figure 11. Average shortest path length (under tuning paramete 2) of
Guiana dolphins in the social network within andwen different periods of
the study. Whiskers represent the 95%CI generateditb model.

PCA analysis pointed Closeness @at= 0.5 (eigenvector
coordinates: Factor 1 = -0.951, Factor 2 = 0.0&1;1Pand 2 accounted
for 80.7% of variation) as the most representatetrality metric from
the 12 variables (Closeness, Betweeness, and 8trahg=0, a=0.5,
a=1, ando=2). Those individuals sighted during all the stugbre more
central in the network than the individuals frorheatperiods (Fig. 12),
i.e. more connected to the rest of individualshia population, when
prioritizing shorter paths with weak edges. It skdvthat individuals’
centrality also varied between the classes of isighgeriod. Individuals
in the beggining of the study showed closenessdiffatrent from the
null expectation. Individuals exclusive from thedeof the study were
less central than expected (Fig. 12).
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Figure 12. Social network centrality of the Guiana dolphimeni different
sighting periods measured by average weighted mésse (under tuning
parameten = 0.5). Whiskers represent the 95%CI generateduiynodels.

Association patterns

Association levels were higher than random valugsnr
individuals classified according to the period thegre sighted (t =
7.555, p =1, r =0.248). Mean association amawmiyviduals sighted
only in thebeginningof the study, among individuals sighted only ia th
end of the study, and among individuals sighted dumtigthe study
were higher than null expectation. On the otherdhaassociations
among individuals of different classes of sightpegriods were lower
than expected by chance (Fig 13). The same pattasnfound for the
association level of individuals classified by tmeodules of the
network: mean associations were higher than exgeutithin the
modules, and lower between them (Mantel test, 83278, p=1,r =
0.410) (Fig. 13). This results strengthen the i@matbetween the
differences in the presence of individuals in tlogydation throughout
the study and the emergence of modules.
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Figure 13. Mean association (Half-weight index) of Guiana ¢hitpdyads off

eastern Brazil within and between classes: theetm®dules of the social
network, and the three 32-month sighting perioée (®xt for further details).
Random values represent the mean randomly HWI geteiby null model.
Whiskers represent 95%CI.

Relative to random expectations, the dyadic assoogwere
low and variable. The occurence of few “preferreaiid “avoided”
companionships and absence of short-term companitms be the
pattern of associations in this population. The imax scale to analyze
associations were determined by turnover and LAR-&halysis (975
dias ~ 32 months). Among all individuals that haneabited the study
area in the same 32-month period, the mean le¥edssociation was
not significantly different than expected by chandeable 4). This
indicated that short-term preferred companionsiigsnot occur. The
CVs of association indices were significantly higheithin periods
(Table 4). It suggested the occurrence of long-teompanions within
the population. Only few dyads were non-random cages: a low
percentage of possible pairs showed levels of &dgwt lower (p <
0.025) and higher (p> 0.975) than expected, suggeat‘avoided” and
“preferred” associations, respectively. The highamessociation per
individual (H = 39.71), combined with the sociafféientiation estimate
(S), provided enough statistical power to rejectribh# hypothesis of no
preferred associations in this dataset XSH =30.06; see Whitehead
2008a).
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Table 4. Guiana dolphins’ observed and expected associatatex (HWI) for all individuals sighted (at leastae) in each 32-
month period. Bold values indicate significant tesyone-tailed test at=0.05). Long-term preferred companionships are
indicated by a significantly high Coefficient of Nation of the real association indices. Short-tgaraferred companionships
would be indicated by a significantly low mean bétreal association indices. Random HWI were estichay 20,000 null
model iterations. “Preferred”/"avoided” dyads shawsgher/lower HWI than expected by chance (twtethiest ab = 0.05);
Percentage is based on expected number of sigmifis@ds. SD = standard deviation, CV = coeffitigfvariation, Non-Zero =
proportion of non-zero HWI.

1st Period 2nd Period 3rd Period
Groups 130 141 138
Individuals 33 36 36
Preferred 10 (37.9 %) 10 (31.7 %) 12 (38.1 %)
Avoided 3(11.4 %) 5 (15.9 %) 5 (15.9 %)
HWI Real Random p Real Random p Real Random p
Mean 0.094 0.098 0.748 0.066 0.071 0.889 0.067 90.060.622
SD 0.110 0.107 0.999 0.107 0.095 0.995 0.115 0.099 0.806
Cv 1.170 1.083 0.972 1.611 1.339 1.000 1.724 1.438 0.999

Non-zero 0.580 0.600 0.236  0.433 0.469 0.061 0.396.439 0.023
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Discussion

Focused on number and duration of relationships, haee
proposed a theoretical framework to predict netwogology for broad
social organization classes of delphinids. The Gtygsis of
interindividual interactions’ strength and densgkaping the social
network was corroborated by the long-term studgssfociations among
Guiana dolphins. The intermediate number and duraif associations
composing a fluid grouping pattern indicated thaaial system with
high fission-fusion dynamics can be architected modular network.

The relatively slightly connected network of Guiatalphins
represented a well differentiated society, in whibh few strong and
many weak ties depicted the fluidness of their aoiciteractions. The
tendency of dolphins to cluster together in thevoek indicates that not
all dolphins have interacted with everyone. Sucletogeneous pattern
of interactions was clearly structured into modulasd then placed
within the range of our conceptual framework. Thierdrchical
organization of this population, structured in swogps of tighter
connected individuals, is comparable to those fouanehost real-world
networks (e.g. Guimera and Amaral 2005a, Newman620),
including the social ones (Newman and Park 2008is division is one
of the essentials of group-living organization ((sa and Ruxton 2002).
Searching for such structures is a mean to untaeeintricate relation
of selective socioecological forces responsibletiier social patterns in
a population.

Several populations of delphinids have presentdigision into
discrete social modules (e.g. Ford et al. 2000séas 2007, Lusseau et
al. 2008, Wiszniewski et al. 2009), as well as oth@ghly social
mammals (e.g. elephants: Wittemyer et al. 200%nges: e.g. Ramos-
Fernandez et al. 2006, Hill et al. 2008, pinnipatfelf et al. 2007). A
varied range of local determinants may lead a fhodial network to
have their populations structured into modules. Twgana dolphin
population studied here offers an inviting case dgamining if non-
social sources affect association patterns anaatily, generate the
modularity. This is because the studied area enaesgs a mosaic of
different habitats (see Rossi-Santes al. 2006), which makes a
population division based on home range segregaptausible.
Moreover, the dynamics of this population is chamazed by
individuals entering and leaving the populationr{toa et al.in pressy,
which bring us an opportunity to evaluate tempogdfects in
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associationsTherefore, by putting such spatio-temporal efféuts the
social context, we present other insights in meismas generating
modularity in non-human social networks. The popoia dynamics
revealed that temporally separated individuals a¢aluive the divisions
in the network, within which the associations caan rfon-randomly
organized.

In the same space at different times

Space use and ranging patterns of individuals nt@yately
forestall or favor social interactions (Waser 1988 me range overlap
may involve costs of apportioning the habitat atsdrésources, which
may lead to spatial avoidance of individuals (é¢dggner et al. 1982,
Carpenter 1987; Maher and Lott 2000). On the dtlaed, shared space
can increase encounters (Clutton-Brock 1989, Sdmer Randall 2004,
Chaverri et al. 2007, Cooper and Randall 2007), imgaksocial
interactions seemingly more prone to occur betwggysically closed
individuals (e.g. Kossinets and Watts 2006, McDdn&009).
Association patterns of some dolphin populations/ rha related to
patterns of spatial overlap (e.g. Rosbach and Hgrzb99, Quintana-
Rizzo and Wells 2001, Frére et al. 2010a, Cagrizil), but this is not
always true in mammals (e.g. De Villiers and Kol®@79Connor et al.
1999, Vonhof et al. 2004, Carter et al. 2009).

Non-random patterns of space use can turn out @mpl
structures in fission-fusion networks (e.g. Rameskndez et al. 2006,
Fortuna et al. 2009). Then, at last, a modular agvwstructure may
emerge in either spatial segregation or overlapdd@phins from the
same population can be found organized in diffesamial units (e.qg.
Urian et al. 2009), sharing patterns of residemzy @ssociations. One of
the causes is the combination of resource avathgbipronounced
habitat preferences and behavioral specializatiersg. Lusseau et al.
2006, Wisziniewski et al. 2009). This pattern midie expected for
Guiana dolphins in the Abrolhos Bank, consideringhe high
heterogeneity of habitats used in a gradient fronei river to offshore
coral reefs (Rossi-Santos et al. 2006), and relgtigmall individual
spatial ranges (Rossi-Santos et al. 2007) possiedding to a
stratification of habitat use (Wilson et al. 199Mpwever it seems that
all the analyzed individuals, at least in the stadya (see Rossi-Santos
et al. 2007, Cantor et ah pres3, were “spatially merged”, i.e. greatly
overlapping their minimum spatial ranges. In costiréd individuals use
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almost the same area but exhibit markedly socifhitis, cohesive
modules of interaction may arise due to strongepretl and avoided
associations. We found no evidence of spatial uséap being a major
factor affecting the dyadic association, unlike sdmottlenose dolphins
(Frére et al. 2010a). This is in accordance with thlatively low
relationship intensity among pairs in this popualati(see below).
Consequently, space use is not the mechanism dimgete observed
modular structure in the Guiana dolphin social roekwv

This outcome reinforces that social matrices inelatbre than
ecological factors or social affinities, and mamyes factors could
contribute to the shaping of a social organizafemg. Wolf et al. 2007).
Regarding delphinids social plasticity, particuias of some dolphin
populations have driven the preferential assortréimdividuals, such
as sex and age class (Lusseau and Newman 200ghjgkifirrere et al.
2010a, Wiszniewski et al. 2010, Cagnazzi et al. 120Xoraging
specializations (e.g. Bigg et al. 1990, Baird arill 1996, Chilvers and
Corkeron 2001, Seargent et al. 2007, Daura-Jordd)2@nd habitat
utilization (Wiszniewski et al. 2009, Rossbhach &fetzing 1999), that
when pronounced may have the potential to leadakdatisions in the
population. Even occasional natural disturbancessggit a previously
stable population into distinct social units (Elisand Herzing 2011).
Population dynamics is a less explored mechanisrfectafg
associations (but see Carter et al. 2009, Pardoak 2009). Here we
present a clear demographic effect shaping thelsoetwork of Guiana
dolphins, which resulted in temporal modules. Thegesets represent
“temporally split” individuals.

A demographic effect

Social interactions are generally time-dependenhi®iead

1995), and elucidating the temporal pattern is ssesetial step of social
relationships studies (Hinde 1976). Moreover, abersng the time
factor is particularly important when dealing witesion-fusion social
systems, due to the dynamism of interactions ifedifit time scales
(Whitehead 1995, Conradt and Roper 2005, Aurelalet2008). We
showed the association probabilities of Guiana ok visibly

dropping, an indication of significantly dissocati over time. Many
reasons can lead to temporally dissociation ofviddals (Whitehead
2008b). Environmental features, dispersion, phggipl(see Whitehead
1995) or geographical traits (Lusseau et al. 2@@8)among of the well-
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known. Interestingly, here the association ratgpdsas attributed to a
population turnover.

Association probabilities among Guiana dolphins strengly
coupled with the likelihood of an individual recam in the region.
Emigration and mortality are relevant populatiorrgpaeters, which
suggest that permanent departure and/or death prvented some
individuals of using the area at the same timshtiuld be highlighted
that, combined with the occurrence of reimmigraf(tivird LIR model),
this pattern corresponds exactly to population dyna obtained by
more robust mark-recapture analysis: an open popaleomprised of a
core of resident individuals and many other tramsi&nd temporary
emigrants (Cantor et aln pres3. Such additions and deletions of
individuals make the population composition at Beginning of the
study different from the end, then affecting therage likelihood of
associations. The potential of individual remowvalchange the social
dynamics of a population has been demonstrated thar @ission-
fusion systems, as decreasing the flexibility armléasing group
size (Lehmann and Boesch 2004), and emerging distotial units
(Elisser and Herzing 2011).

In summary, we propose that this demographic effeshaping
the modular structure in three social subsets. Bustaining a constant
abundance (see Cantor etialpres3, this population has undergone a
markedly population turnover. The temporal scalghalse differences
in the population composition was the same 32-mointhwhich
association and identification rates have matched tmost prominent
decay. Furthermore, individuals sighted within #hgseriods were
separated in the three modules: two containinghdiedpof the extremes
of the study, and a smaller mixed module. This &aftts an evidence of
temporal influence on non-human social network kogy to the recent
growing debate of network dynamism, hitherto diedcto ecological
(e.g. Olesen et al. 2008, Diaz-Castelazo et al.0ROinetabolic,
technological and human social networks (e.g. Fali@. 2007, Bryden
et al. 2010, Delvenne et al. 2010).

The temporal pattern in module formation was casrated by
local network metrics for individuals of differectasses of sighting
period. Individuals sighted exclusively in the extres of the study were
more closely and stronger connected, reflectingdthision in modules.
Shorter path lengths separated individuals from ldbginning of the
study and individuals sighted in other periodsjvittials from the end
were also closer to themselves. Since equallyiligad across the three
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modules, resident individuals that were sightech@lthe entire study
were less cohesive, with edges spread to dolphittsei whole network.
On the other hand, it assigned these residentsra osmtral position.
Conversely, individuals present in the populatiothez only in the
beginning or in the last third of the monitoringcapied peripheral
position in the network.

Identification of individuals with different posiths in a
network allows further inferences in transfer ptitgr{of gene, diseases,
parasites and information) through the societyi¢wed in Krause et al.
2010). This arrangement points the resident indifsl as the core of
the population in the Caravelas Estuary. Being nfogquent in the
area, they are closer to transient individuals ammy be in a key
position in the society. More central individuaédnfluence leadership
and decision-making processes in a group (Lusse@i, 2usseau and
Conradt 2009, Lewis et al. 2010), and determinenisigvork structure
(Ramos-Fernandez et al. 2009). Moreover, by regchaveral others
individuals, central individuals may also accedsrimation quickly or
affect disease spread in the population (LussedB,20usseau and
Newman 2004, Guimaraes et al. 2007, Fortuna €089, Salathé and
Jones 2010).

From a static network structure to a fluid socialsture

Despite a fixed representation, a graph encodeslyhamism
of a system (see Bryden et al. 2010). At the loveasd| of a static social
network depiction are the time-varying pairwiseemactions, the basis
of a social structure characterization (Hinde 197B)e proximate
means for maintenance and change of a social steuis the repetition
of interactions between individuals (Lee 1994). Fhdentifying and
quantifying their deviation from randomness is aibaequirement to
consider a population as socially structured (Wiagel et al. 2005). At
the society level, nonrandomly fluidness in relasioips across this
Guiana dolphin population was earlier suggestedthsy temporal
features of association probabilities. Groupinggras were generalized
as rapid associations (which last for less thanag) dand casual
acquaintances (last further than a day and thesslisiate).

Testing association indices may be a tricky task @/hitehead
1999, Miklés and Podani 2004, Whitehead et al. 200% order to
dodge potential biases of popular permutation txgder et al. 1998,
Krause et al. 2009), we relied on a different malbdel, based on
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established randomization procedures (e.g. Baseomptal. 2003,

Véazquez et al. 2009). Furthermore, the demogragifiécts could mask
the real pattern if not accounted for, simply beeaundividuals might
not have the opportunity to encounter (Whitehea®)9To overcome
this, our experiment was split at the scale of hbpulation turnover,
and the randomization process constrained withimoge which

population closure was reasonable (see Cantor iet ples3. Thus, we
propose this alternative as a reliable approach tésting dyadic
associations.

Pairs of Guiana dolphins sighted within the samem®ath
period on average showed higher association indax éxpected only
by chance. Such trend was also found with the dgagdpbomposing the
network modules. Scaling down the search to thedslyassociation
degrees were mostly low and variable, but some randem
preferences and avoidances are noticed among rhadyassociations.
Some nonrandom partnerships between mammalianespibat display
dynamic grouping patterns are relatively commog.(8undaresan et al.
2007, Ramos-Fernandez et al. 2009). While delpkig&herally exhibit
short-duration associations (e.g. Wells et al. 1980hnor et al. 1992,
Slooten et al. 1993, Karczmarski 1999), within @ydation some adult
females may form lasting associations (Frere e2@l.0a) and some
males may be engaged in more stable long-termgrattips (e.g. Owen
et al. 2002). This flexibility may suggest thatat@nships last as long
as fitness benefits of sociality are high (e.g. aedta et al. 1994,
Wittemyer et al. 2005).

These outcomes, combined with the network properiiee
temporal variatiorand spatial patterns, confer a fission-fusion dyinam
to this Guiana dolphin population: high temporaliaton in group size
and composition, even with a moderate spatial doheamong
members ¢f. Aureli's et al. 2008 framework). Put together witie
findings of lack of consistency in group memberslip another
population (Santos and Rosso 2008), the fissioifusocial or-
ganizationmay be a general pattern for this species. However, must
look to the latitudinal differences in this speci®rage group size (e.qg.
Santos and Rosso 2007), a variation better docwdefdar other
delphinids (Gygax 2000). Systems with fission-fas@tynamics usually
show pronounced group size variation as a resptmgbe varying
interaction of ecological variables (Wrangham 19&2¢pulations of
Guiana dolphins spread along the latitudinal raofgéhe species may
experience significant differences in habitat pctten (or predation
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risk) and food resources (prey abundance), whiclildcoaffect

individuals interactions (Gowans et al. 2008, Tab)e Therefore, a
broader analysis should quantify the different degrof fission-fusion
dynamism in other Guiana dolphin populations. Thenlgination of

Aureli’s et al. (2008) framework, the analyticaltime presented here
and the assessment of genetic factors (e.g. Ftewd. £010b) and
reproductive states (e.g. Moller and Harcourt 20B8chhoff et al.

2009, Patriquin et al. 2010) is a reliable starfioint.

Concluding remarks

Recognizing determinants of network topology isirmportant
step towards the identification of mechanisms dgvsocial systems.
This effort, in turn, contributes to address howiemmental and
biological characteristics have interacted over l@anary time
sculpting such systems (Crook et al. 1976, Wellsl.et987). Here, the
proposed reductionist framework of non-human soamdtwork
architectures gave us insights of mechanisms aifgctsocial
organization. The Guiana dolphin society off east@razil was
modularly structured as predicted, and showed alptipn turnover as
the major factor shaping the fluid dyadic assooisi Therefore, we
highlighted that non-social factors can greatlyeefff association
networks, and should be accounted for an appositeagal of societies
with fission-fusion dynamics.

Regarding the high complexity of social systems dhd
plasticity across different species and populatam,framework may be
simplistic and it still remains largely untesteditBt is an opening for
new working hypothesis. An accurate ethological efiog of social
patterns is required to assess social processestefad 2008b)
supporting next steps into more complex behaviarad ecological
questions concerning cost-benefits of grouping. (dajolo et al. 2008),
individual fitness (e.g. Frere et al. 2010b), ongfie bases of social
interaction (Fowler et al. 2011). Given our framek® socioecological
basis, further studies may provide empirical data iotrinsic and
extrinsic forces (e.g. predation, prey distribufitm strengthen the link
between resource predictability and the sociaramtiions (e.g. Ramos-
Ferndndez et al2006; models suggested by Aureli et al. 2008).
Moreover, one may ask whether the non-human sesiegivolve
following a sequence of incremental increases mmexity, such the
political evolution of societies of their living legives (Currie et al.
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2010).To these ends, the network formalism has beenresbigs an
auspicious beginning (Dorogovtsev and Mendes 2@Qbaral and
Ottino 2004, Ohtsuki et al. 2006, Palla et al. 208ih et al. 2009,
Bryden et al. 2010).
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Os frutos deste trabalho podem ser vistos em tifésedtes
escalas. Em uma perspectiva (1) local, a dindAmaaulpcional até
entdo desconhecida dSotalia guianensisno ambiente altamente
heterogéneo do Banco dos Abrolhos teve diversoscasp revelados.
Trata-se de uma populagédo pequena, composta pamsalgdividuos
residentes e diversos outros que atravessam ouizamtil
temporariamente a &rea. Sobrevivéncia e abundaanizal sao
aparentemente constantes, porém a movimentacaodikéduos entre
areas adjacentes parece promover mudancas na ¢Epukste efeito
demogréafico mostrou-se refletido no padrdo de @mghes entre
individuos. A taxa de substituicdo de individuasrrove) parece
separar temporalmente a populacdo em dois priscipanjuntos de
interacbes sociais. Dentro da escala temporal tdmover as
associacbes mostram-se em sua maioria de curtadyranas a
presenca de algumas associacdes nao-aleatériasdeoump quadro
heterogéneo.

Em uma escala (2) regional, este estudo ofereeeheira
vez uma série de parametros populacionais parpéxies Reforca-se,
assim, a importancia de monitoramentos em longpoppara obtencao
de estimativas robustas e com boa precisédo. Bdtallio contribui para
0 preenchecimento a lacuna de conhecimento quedenaeavaliacdo
adequada dstatusde conservacao da espécie, enquanto uma série de
pressdes antropogénicas nos habitats costeiros geakscer. O estudo
oferece ainda, mais uma forte evidéncia da dindm&dissao-fuséo
como o padrdo de interagcdes sociais da espécie &dnda pouco
explorado. Adiciona-se uma visdo global do padr@askociacdes da
populacgéo, até entdo restrita a analise entre gargslividuos. Mostra-
se, assim, que uma rede social fluida pode seitataga em maddulos.
Novamente, fica enfatizada a necessidade de laagdactemporal para
levar em conta mecanismos nao-sociais afetando dragpade
sociabilidade.

Por fim, com uma visdo mais (3) ampla, este estoddirma a
viabilidade de modelagem de dados de foto-ideatiio de cetaceos de
vida livre, obtidos em meio a diversos desafiosisiigps, com
experimentos de marcacao-recaptura e de agrupardenitedividuos.
Dessa forma, se oferece como guia de conduta disemnpopulacionais
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e sociais, visando uma comparacao padronizada afutliista
comparacgéo, se conduzida com outras populacdeS. dpiianensis
apresenta uma aplicagdo pratica imediata: a dafinigdequada do
statusda espécie, que deve aperfeicoar esforcos de rgagde. Ao
propor um modelo conceitual de previsdo da topalog redes sociais
de classes de organizagfes encontradas em Debuhin@ estudo
arrisca-se, ainda, a inspirar novas hipotesesathaltro. Mostrou-se que
a insercdo de efeitos espaco-temporais no consexial pode oferecer
novos insights sobre mecanismos que afetam a topologia de redes
sociais. Portanto, estes devem ser levados emderagéio para uma
caracterizacdo adequada de sociedades com din@mitiaséo-fuséo.
Reconhecer determinantes da topologia de redes gagso importante
na identificagdo de como mecanismos biolégicos biemtais tem
interagido ao longo do tempo evolutivo e entalhsidtemas complexos
e auto-organizados como as estruturas sociais phiDidae.



